

Adafruit CircuitPython Register library

This library provides a variety of data descriptor class for Adafruit
CircuitPython [https://github.com/adafruit/circuitpython] that makes it really
simple to write a device drivers for a I2C and SPI register based devices. Data
descriptors act like basic attributes from the outside which makes using them
really easy to use.

API

	Module Reference
	I2C
	i2c_bit - Single bit registers

	i2c_bits - Multi bit registers

	i2c_struct - Generic structured registers based on struct

	i2c_bcd_datetime - Binary Coded Decimal date and time register

	i2c_bcd_alarm - Binary Coded Decimal alarm register

	SPI

Creating a driver

Creating a driver with the register library is really easy. First, import the
register modules you need from the available modules:

from adafruit_register import i2c_bit
from adafruit_bus_device import i2c_device

Next, define where the bit is located in the device’s memory map:

class HelloWorldDevice:
 """Device with two bits to control when the words 'hello' and 'world' are lit."""

 hello = i2c_bit.RWBit(0x0, 0x0)
 """Bit to indicate if hello is lit."""

 world = i2c_bit.RWBit(0x1, 0x0)
 """Bit to indicate if world is lit."""

Lastly, we need to add an i2c_device member of type I2CDevice [https://circuitpython.readthedocs.io/projects/bus_device/en/latest/adafruit_bus_device/index.html#adafruit_bus_device.i2c_device.I2CDevice]
that manages sharing the I2C bus for us. Make sure the name is exact, otherwise
the registers will not be able to find it. Also, make sure that the i2c device
implements the busio.I2C [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C] interface.

def __init__(self, i2c, device_address=0x0):
 self.i2c_device = i2c_device.I2CDevice(i2c, device_address)

Thats it! Now we have a class we can use to talk to those registers:

import busio
from board import *

with busio.I2C(SCL, SDA) as i2c:
 device = HelloWorldDevice(i2c)
 device.hello = True
 device.world = True

Adding register types

Adding a new register type is a little more complicated because you need to be
careful and minimize the amount of memory the class will take. If you don’t,
then a driver with five registers of your type could take up five times more
extra memory.

First, determine whether the new register class should go in an existing module
or not. When in doubt choose a new module. The more finer grained the modules
are, the fewer extra classes a driver needs to load in.

Here is the start of the RWBit class:

class RWBit:
 """
 Single bit register that is readable and writeable.

 Values are `bool`

 :param int register_address: The register address to read the bit from
 :param type bit: The bit index within the byte at ``register_address``
 """
 def __init__(self, register_address, bit):
 self.bit_mask = 1 << bit
 self.buffer = bytearray(2)
 self.buffer[0] = register_address

The first thing done is writing an RST formatted class comment that explains the
functionality of the register class and any requirements of the register layout.
It also documents the parameters passed into the constructor (__init__) which
configure the register location in the device map. It does not include the
device address or the i2c object because its shared on the device class instance
instead. That way if you have multiple of the same device on the same bus, the
register classes will be shared.

In __init__ we only use two member variable because each costs 8 bytes of
memory plus the memory for the value. And remember this gets multiplied by the
number of registers of this type in a driver! Thats why we pack both the
register address and data byte into one bytearray. We could use two byte arrays
of size one but each MicroPython object is 16 bytes minimum due to the garbage
collector. So, by sharing a byte array we keep it to the 16 byte minimum instead
of 32 bytes. Each memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview] also costs 16 bytes minimum so we avoid them too.

Another thing we could do is allocate the bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] only when we need it. This
has the advantage of taking less memory up front but the cost of allocating it
every access and risking it failing. If you want to add a version of Foo that
lazily allocates the underlying buffer call it FooLazy.

Ok, onward. To make a data descriptor [https://docs.python.org/3/howto/descriptor.html]
we must implement __get__ and __set__.

def __get__(self, obj, objtype=None):
 with obj.i2c_device:
 obj.i2c_device.write(self.buffer, end=1, stop=False)
 obj.i2c_device.readinto(self.buffer, start=1)
 return bool(self.buffer[1] & self.bit_mask)

def __set__(self, obj, value):
 with obj.i2c_device:
 obj.i2c_device.write(self.buffer, end=1, stop=False)
 obj.i2c_device.readinto(self.buffer, start=1)
 if value:
 self.buffer[1] |= self.bit_mask
 else:
 self.buffer[1] &= ~self.bit_mask
 obj.i2c_device.write(self.buffer)

As you can see, we have two places to get state from. First, self stores the
register class members which locate the register within the device memory map.
Second, obj is the driver class that uses the register class which must by
definition provide a I2CDevice [https://circuitpython.readthedocs.io/projects/bus_device/en/latest/adafruit_bus_device/index.html#adafruit_bus_device.i2c_device.I2CDevice] compatible
object as i2c_device. This object does two thing for us:

	Waits for the bus to free, locks it as we use it and frees it after.

	Saves the device address and other settings so we don’t have to.

Note that we take heavy advantage of the start and end parameters to the
i2c functions to slice the buffer without actually allocating anything extra.
They function just like self.buffer[start:end] without the extra allocation.

Thats it! Now you can use your new register class like the example above. Just
remember to keep the number of members to a minimum because the class may be
used a bunch of times.

Indices and tables

	Index

	Module Index

	Search Page

Module Reference

I2C

i2c_bit - Single bit registers

i2c_bit - Single bit registers

	
class ROBit(register_address, bit)

	Single bit register that is read only. Subclass of RWBit.

Values are bool [https://docs.python.org/3/library/functions.html#bool]

	Parameters

	
	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to read the bit from

	bit (type [https://circuitpython.readthedocs.io/en/latest/docs/library/builtins.html#type]) – The bit index within the byte at register_address

	
class RWBit(register_address, bit)

	Single bit register that is readable and writeable.

Values are bool [https://docs.python.org/3/library/functions.html#bool]

	Parameters

	
	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to read the bit from

	bit (type [https://circuitpython.readthedocs.io/en/latest/docs/library/builtins.html#type]) – The bit index within the byte at register_address

i2c_bits - Multi bit registers

i2c_bits - Multi bit registers

	
class ROBits(num_bits, register_address, lowest_bit)

	Multibit register (less than a full byte) that is read-only. This must be
within a byte register.

Values are int [https://docs.python.org/3/library/functions.html#int] between 0 and 2 ** num_bits - 1.

	Parameters

	
	num_bits (int [https://docs.python.org/3/library/functions.html#int]) – The number of bits in the field.

	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to read the bit from

	lowest_bit (type [https://circuitpython.readthedocs.io/en/latest/docs/library/builtins.html#type]) – The lowest bits index within the byte at register_address

	
class RWBits(num_bits, register_address, lowest_bit)

	Multibit register (less than a full byte) that is readable and writeable.
This must be within a byte register.

Values are int [https://docs.python.org/3/library/functions.html#int] between 0 and 2 ** num_bits - 1.

	Parameters

	
	num_bits (int [https://docs.python.org/3/library/functions.html#int]) – The number of bits in the field.

	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to read the bit from

	lowest_bit (type [https://circuitpython.readthedocs.io/en/latest/docs/library/builtins.html#type]) – The lowest bits index within the byte at register_address

i2c_struct - Generic structured registers based on struct [https://docs.python.org/3/library/struct.html#module-struct]

i2c_struct - Generic structured registers based on struct [https://docs.python.org/3/library/struct.html#module-struct]

	
class Struct(register_address, struct_format)

	Arbitrary structure register that is readable and writeable.

Values are tuples that map to the values in the defined struct. See struct
module documentation for struct format string and its possible value types.

	Parameters

	
	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to read the bit from

	struct_format (type [https://circuitpython.readthedocs.io/en/latest/docs/library/builtins.html#type]) – The struct format string for this register.

	
class UnaryStruct(register_address, struct_format)

	Arbitrary single value structure register that is readable and writeable.

Values map to the first value in the defined struct. See struct
module documentation for struct format string and its possible value types.

	Parameters

	
	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to read the bit from

	struct_format (type [https://circuitpython.readthedocs.io/en/latest/docs/library/builtins.html#type]) – The struct format string for this register.

i2c_bcd_datetime - Binary Coded Decimal date and time register

i2c_bcd_datetime - Binary Coded Decimal date and time register

	
class BCDDateTimeRegister(register_address, weekday_first=True, weekday_start=1)

	Date and time register using binary coded decimal structure.

The byte order of the register must* be: second, minute, hour, weekday, day (1-31), month, year
(in years after 2000).

	Setting weekday_first=False will flip the weekday/day order so that day comes first.

Values are time.struct_time [https://docs.python.org/3/library/time.html#time.struct_time]

	Parameters

	
	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to start the read

	weekday_first (bool [https://docs.python.org/3/library/functions.html#bool]) – True if weekday is in a lower register than the day of the month
(1-31)

	weekday_start (int [https://docs.python.org/3/library/functions.html#int]) – 0 or 1 depending on the RTC’s representation of the first day of the
week

i2c_bcd_alarm - Binary Coded Decimal alarm register

i2c_bcd_alarm - Binary Coded Decimal alarm register

	
class BCDAlarmTimeRegister(register_address, has_seconds=True, weekday_shared=True, weekday_start=1)

	Alarm date and time register using binary coded decimal structure.

The byte order of the registers must* be: [second], minute, hour, day,
weekday. Each byte must also have a high enable bit where 1 is disabled and
0 is enabled.

	If weekday_shared is True, then weekday and day share a register.

	If has_seconds is True, then there is a seconds register.

Values are a tuple of (time.struct_time [https://docs.python.org/3/library/time.html#time.struct_time], str [https://docs.python.org/3/library/stdtypes.html#str]) where the struct represents
a date and time that would alarm. The string is the frequency:

	“secondly”, once a second (only if alarm has_seconds)

	“minutely”, once a minute when seconds match (if alarm doesn’t seconds then when seconds = 0)

	“hourly”, once an hour when tm_min and tm_sec match

	“daily”, once a day when tm_hour, tm_min and tm_sec match

	“weekly”, once a week when tm_wday, tm_hour, tm_min, tm_sec match

	“monthly”, once a month when tm_mday, tm_hour, tm_min, tm_sec match

	Parameters

	
	register_address (int [https://docs.python.org/3/library/functions.html#int]) – The register address to start the read

	has_seconds (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the alarm can happen minutely.

	weekday_shared (bool [https://docs.python.org/3/library/functions.html#bool]) – True if weekday and day share the same register

	weekday_start (int [https://docs.python.org/3/library/functions.html#int]) – 0 or 1 depending on the RTC’s representation of the first day of the
week (Monday)

SPI

Coming soon!

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 adafruit_register	

 	
 	
 adafruit_register.i2c_bcd_alarm	

 	
 	
 adafruit_register.i2c_bcd_datetime	

 	
 	
 adafruit_register.i2c_bit	

 	
 	
 adafruit_register.i2c_bits	

 	
 	
 adafruit_register.i2c_struct	

Index

 A
 | B
 | R
 | S
 | U

A

 	
 	adafruit_register.i2c_bcd_alarm (module)

 	adafruit_register.i2c_bcd_datetime (module)

 	
 	adafruit_register.i2c_bit (module)

 	adafruit_register.i2c_bits (module)

 	adafruit_register.i2c_struct (module)

B

 	
 	BCDAlarmTimeRegister (class in adafruit_register.i2c_bcd_alarm)

 	
 	BCDDateTimeRegister (class in adafruit_register.i2c_bcd_datetime)

R

 	
 	ROBit (class in adafruit_register.i2c_bit)

 	ROBits (class in adafruit_register.i2c_bits)

 	
 	RWBit (class in adafruit_register.i2c_bit)

 	RWBits (class in adafruit_register.i2c_bits)

S

 	
 	Struct (class in adafruit_register.i2c_struct)

U

 	
 	UnaryStruct (class in adafruit_register.i2c_struct)

 nav.xhtml

 Table of Contents

 		
 Adafruit CircuitPython Register library

 		
 Module Reference

 		
 I2C

 		
 i2c_bit - Single bit registers

 		
 i2c_bits - Multi bit registers

 		
 i2c_struct - Generic structured registers based on struct

 		
 i2c_bcd_datetime - Binary Coded Decimal date and time register

 		
 i2c_bcd_alarm - Binary Coded Decimal alarm register

 		
 SPI

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

