
Adafruitrfm9x Library Documentation
Release 1.0

Tony DiCola

Mar 21, 2019

Contents

1 Dependencies 3

2 Usage Example 5

3 Contributing 7

4 Building locally 9
4.1 Zip release files . 9
4.2 Sphinx documentation . 9

5 Table of Contents 11
5.1 Simple test . 11
5.2 adafruit_rfm9x . 12

6 Indices and tables 15

Python Module Index 17

i

ii

Adafruitrfm9x Library Documentation, Release 1.0

CircuitPython module for the RFM95/6/7/8 LoRa 433/915mhz radio modules.

Contents 1

https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/
https://discord.gg/nBQh6qu
https://travis-ci.com/adafruit/Adafruit_CircuitPython_RFM9x

Adafruitrfm9x Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Dependencies

This driver depends on:

• Adafruit CircuitPython

• Bus Device

Please ensure all dependencies are available on the CircuitPython filesystem. This is easily achieved by downloading
the Adafruit library and driver bundle.

3

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

Adafruitrfm9x Library Documentation, Release 1.0

4 Chapter 1. Dependencies

CHAPTER 2

Usage Example

Initialization of the RFM radio requires specifying a frequency appropriate to your radio hardware (i.e. 868-915 or
433 MHz) and specifying the pins used in your wiring from the controller board to the radio module.

This example code matches the wiring used in the LoRa and LoRaWAN Radio for Raspberry Pi project:

import digitalio
import board
import busio
import adafruit_rfm9x

RADIO_FREQ_MHZ = 915.0
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

Note: the default baudrate for the SPI is 50000000 (5MHz). The maximum setting is 10Mhz but transmission errors
have been observed expecially when using breakout boards. For breakout boards or other configurations where the
boards are separated, it may be necessary to reduce the baudrate for reliable data transmission. The baud rate may be
specified as an keyword parameter when initializing the board. To set it to 1000000 use :

Initialze RFM radio with a more conservative baudrate
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ, baudrate=1000000)

Optional controls exist to alter the signal bandwidth, coding rate, and spreading factor settings used by the ra-
dio to achieve better performance in different environments. By default, settings compatible with RadioHead
Bw125Cr45Sf128 mode are used, which can be altered in the following manner (continued from the above exam-
ple):

Apply new modem config settings to the radio to improve its effective range
rfm9x.signal_bandwidth = 62500
rfm9x.coding_rate = 6
rfm9x.spreading_factor = 8
rfm9x.enable_crc = True

5

https://learn.adafruit.com/lora-and-lorawan-radio-for-raspberry-pi/

Adafruitrfm9x Library Documentation, Release 1.0

See examples/rfm9x_simpletest.py for an expanded demo of the usage.

6 Chapter 2. Usage Example

CHAPTER 3

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

7

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/CODE_OF_CONDUCT.md

Adafruitrfm9x Library Documentation, Release 1.0

8 Chapter 3. Contributing

CHAPTER 4

Building locally

4.1 Zip release files

To build this library locally you’ll need to install the circuitpython-build-tools package.

python3 -m venv .env
source .env/bin/activate
pip install circuitpython-build-tools

Once installed, make sure you are in the virtual environment:

source .env/bin/activate

Then run the build:

circuitpython-build-bundles --filename_prefix adafruit-circuitpython-rfm9x --library_
→˓location .

4.2 Sphinx documentation

Sphinx is used to build the documentation based on rST files and comments in the code. First, install dependencies
(feel free to reuse the virtual environment from above):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-rtd-theme

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build/html

9

https://github.com/adafruit/circuitpython-build-tools

Adafruitrfm9x Library Documentation, Release 1.0

This will output the documentation to docs/_build/html. Open the index.html in your browser to view them. It
will also (due to -W) error out on any warning like Travis will. This is a good way to locally verify it will pass.

10 Chapter 4. Building locally

CHAPTER 5

Table of Contents

5.1 Simple test

Ensure your device works with this simple test.

Listing 1: examples/rfm9x_simpletest.py

1 # Simple demo of sending and recieving data with the RFM95 LoRa radio.
2 # Author: Tony DiCola
3 import board
4 import busio
5 import digitalio
6

7 import adafruit_rfm9x
8

9

10 # Define radio parameters.
11 RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
12 # module! Can be a value like 915.0, 433.0, etc.
13

14 # Define pins connected to the chip, use these if wiring up the breakout according to
→˓the guide:

15 CS = digitalio.DigitalInOut(board.D5)
16 RESET = digitalio.DigitalInOut(board.D6)
17 # Or uncomment and instead use these if using a Feather M0 RFM9x board and the

→˓appropriate
18 # CircuitPython build:
19 # CS = digitalio.DigitalInOut(board.RFM9X_CS)
20 # RESET = digitalio.DigitalInOut(board.RFM9X_RST)
21

22 # Define the onboard LED
23 LED = digitalio.DigitalInOut(board.D13)
24 LED.direction = digitalio.Direction.OUTPUT
25

(continues on next page)

11

Adafruitrfm9x Library Documentation, Release 1.0

(continued from previous page)

26 # Initialize SPI bus.
27 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
28

29 # Initialze RFM radio
30 rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)
31

32 # Note that the radio is configured in LoRa mode so you can't control sync
33 # word, encryption, frequency deviation, or other settings!
34

35 # You can however adjust the transmit power (in dB). The default is 13 dB but
36 # high power radios like the RFM95 can go up to 23 dB:
37 rfm9x.tx_power = 23
38

39 # Send a packet. Note you can only send a packet up to 252 bytes in length.
40 # This is a limitation of the radio packet size, so if you need to send larger
41 # amounts of data you will need to break it into smaller send calls. Each send
42 # call will wait for the previous one to finish before continuing.
43 rfm9x.send(bytes("Hello world!\r\n","utf-8"))
44 print('Sent Hello World message!')
45

46 # Wait to receive packets. Note that this library can't receive data at a fast
47 # rate, in fact it can only receive and process one 252 byte packet at a time.
48 # This means you should only use this for low bandwidth scenarios, like sending
49 # and receiving a single message at a time.
50 print('Waiting for packets...')
51

52 while True:
53 packet = rfm9x.receive()
54 # Optionally change the receive timeout from its default of 0.5 seconds:
55 #packet = rfm9x.receive(timeout=5.0)
56 # If no packet was received during the timeout then None is returned.
57 if packet is None:
58 # Packet has not been received
59 LED.value = False
60 print('Received nothing! Listening again...')
61 else:
62 # Received a packet!
63 LED.value = True
64 # Print out the raw bytes of the packet:
65 print('Received (raw bytes): {0}'.format(packet))
66 # And decode to ASCII text and print it too. Note that you always
67 # receive raw bytes and need to convert to a text format like ASCII
68 # if you intend to do string processing on your data. Make sure the
69 # sending side is sending ASCII data before you try to decode!
70 packet_text = str(packet, 'ascii')
71 print('Received (ASCII): {0}'.format(packet_text))
72 # Also read the RSSI (signal strength) of the last received message and
73 # print it.
74 rssi = rfm9x.rssi
75 print('Received signal strength: {0} dB'.format(rssi))

5.2 adafruit_rfm9x

CircuitPython module for the RFM95/6/7/8 LoRa 433/915mhz radio modules. This is adapted from the Radiohead
library RF95 code from: http: www.airspayce.com/mikem/arduino/RadioHead/

12 Chapter 5. Table of Contents

Adafruitrfm9x Library Documentation, Release 1.0

• Author(s): Tony DiCola, Jerry Needell

class adafruit_rfm9x.RFM9x(spi, cs, reset, frequency, *, preamble_length=8, high_power=True,
baudrate=5000000)

Interface to a RFM95/6/7/8 LoRa radio module. Allows sending and receivng bytes of data in long range LoRa
mode at a support board frequency (433/915mhz).

You must specify the following parameters: - spi: The SPI bus connected to the radio. - cs: The CS pin
DigitalInOut connected to the radio. - reset: The reset/RST pin DigialInOut connected to the radio. - frequency:
The frequency (in mhz) of the radio module (433/915mhz typically).

You can optionally specify: - preamble_length: The length in bytes of the packet preamble (default 8). -
high_power: Boolean to indicate a high power board (RFM95, etc.). Default is True for high power. - baudrate:
Baud rate of the SPI connection, default is 10mhz but you might choose to lower to 1mhz if using long wires or
a breadboard.

Remember this library makes a best effort at receiving packets with pure Python code. Trying to receive packets
too quickly will result in lost data so limit yourself to simple scenarios of sending and receiving single packets
at a time.

Also note this library tries to be compatible with raw RadioHead Arduino library communication. This means
the library sets up the radio modulation to match RadioHead’s defaults. Features like addressing and guaranteed
delivery need to be implemented at an application level.

coding_rate
The coding rate used by the radio to control forward error correction (try setting to a higher value to
increase tolerance of short bursts of interference or to a lower value to increase bit rate). Valid values are
limited to 5, 6, 7, or 8.

enable_crc
Set to True to enable hardware CRC checking of incoming packets. Incoming packets that fail the CRC
check are not processed. Set to False to disable CRC checking and process all incoming packets.

frequency_mhz
The frequency of the radio in Megahertz. Only the allowed values for your radio must be specified (i.e.
433 vs. 915 mhz)!

idle()
Enter idle standby mode.

listen()
Listen for packets to be received by the chip. Use receive() to listen, wait and retrieve packets as
they’re available.

preamble_length
The length of the preamble for sent and received packets, an unsigned 16-bit value. Received packets must
match this length or they are ignored! Set to 8 to match the RadioHead RFM95 library.

receive(timeout=0.5, keep_listening=True, with_header=False, rx_filter=255)
Wait to receive a packet from the receiver. Will wait for up to timeout_s amount of seconds for a packet to
be received and decoded. If a packet is found the payload bytes are returned, otherwise None is returned
(which indicates the timeout elapsed with no reception). If keep_listening is True (the default) the chip
will immediately enter listening mode after reception of a packet, otherwise it will fall back to idle mode
and ignore any future reception. A 4-byte header must be prepended to the data for compatibilty with the
RadioHead library. The header consists of a 4 bytes (To,From,ID,Flags). The default setting will accept
any incomming packet and strip the header before returning the packet to the caller. If with_header is True
then the 4 byte header will be returned with the packet. The payload then begins at packet[4]. rx_fliter
may be set to reject any “non-broadcast” packets that do not contain the specfied “To” value in the header.
if rx_filter is set to 0xff (_RH_BROADCAST_ADDRESS) or if the “To” field (packet[[0]) is equal to 0xff

5.2. adafruit_rfm9x 13

Adafruitrfm9x Library Documentation, Release 1.0

then the packet will be accepted and returned to the caller. If rx_filter is not 0xff and packet[0] does not
match rx_filter then the packet is ignored and None is returned.

reset()
Perform a reset of the chip.

rssi
The received strength indicator (in dBm) of the last received message.

send(data, timeout=2.0, tx_header=(255, 255, 0, 0))
Send a string of data using the transmitter. You can only send 252 bytes at a time (limited by chip’s FIFO
size and appended headers). This appends a 4 byte header to be compatible with the RadioHead library.
The tx_header defaults to using the Broadcast addresses. It may be overidden by specifying a 4-tuple of
bytes containing (To,From,ID,Flags) The timeout is just to prevent a hang (arbitrarily set to 2 seconds)

signal_bandwidth
The signal bandwidth used by the radio (try setting to a higher value to increase throughput or to a
lower value to increase the likelihood of successfully received payloads). Valid values are listed in
RFM9x.bw_bins.

sleep()
Enter sleep mode.

spreading_factor
The spreading factor used by the radio (try setting to a higher value to increase the receiver’s ability to
distinguish signal from noise or to a lower value to increase the data transmission rate). Valid values are
limited to 6, 7, 8, 9, 10, 11, or 12.

transmit()
Transmit a packet which is queued in the FIFO. This is a low level function for entering transmit mode and
more. For generating and transmitting a packet of data use send() instead.

tx_power
The transmit power in dBm. Can be set to a value from 5 to 23 for high power devices (RFM95/96/97/98,
high_power=True) or -1 to 14 for low power devices. Only integer power levels are actually set (i.e. 12.5
will result in a value of 12 dBm). The actual maximum setting for high_power=True is 20dBm but for
values > 20 the PA_BOOST will be enabled resulting in an additional gain of 3dBm. The actual setting is
reduced by 3dBm. The reported value will reflect the reduced setting.

14 Chapter 5. Table of Contents

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

Adafruitrfm9x Library Documentation, Release 1.0

16 Chapter 6. Indices and tables

Python Module Index

a
adafruit_rfm9x, 12

17

Adafruitrfm9x Library Documentation, Release 1.0

18 Python Module Index

Index

A
adafruit_rfm9x (module), 12

C
coding_rate (adafruit_rfm9x.RFM9x attribute), 13

E
enable_crc (adafruit_rfm9x.RFM9x attribute), 13

F
frequency_mhz (adafruit_rfm9x.RFM9x attribute),

13

I
idle() (adafruit_rfm9x.RFM9x method), 13

L
listen() (adafruit_rfm9x.RFM9x method), 13

P
preamble_length (adafruit_rfm9x.RFM9x at-

tribute), 13

R
receive() (adafruit_rfm9x.RFM9x method), 13
reset() (adafruit_rfm9x.RFM9x method), 14
RFM9x (class in adafruit_rfm9x), 13
rssi (adafruit_rfm9x.RFM9x attribute), 14

S
send() (adafruit_rfm9x.RFM9x method), 14
signal_bandwidth (adafruit_rfm9x.RFM9x at-

tribute), 14
sleep() (adafruit_rfm9x.RFM9x method), 14
spreading_factor (adafruit_rfm9x.RFM9x at-

tribute), 14

T
transmit() (adafruit_rfm9x.RFM9x method), 14
tx_power (adafruit_rfm9x.RFM9x attribute), 14

19

	Dependencies
	Usage Example
	Contributing
	Building locally
	Zip release files
	Sphinx documentation

	Table of Contents
	Simple test
	adafruit_rfm9x

	Indices and tables
	Python Module Index

