

Introduction

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/dht/en/latest/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_DHT/actions]CircuitPython support for the DHT11 and DHT22 temperature and humidity devices.

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-dht/]. To install for current user:

pip3 install adafruit-circuitpython-dht

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-dht

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-dht

Usage Example

Hardware Set-up

Designed specifically to work with the Adafruit DHT series sensors:

	Adafruit DHT22 temperature-humidity sensor + extras [https://www.adafruit.com/products/385]

	Adafruit DHT11 temperature-humidity sensor + extras [https://www.adafruit.com/products/386]

Note

DHT11 and DHT22 devices both need a pull-resistor on the data signal wire. This resistor is in the range of 1k to 5k

	Please check the device datasheet for the appropriate value.

	Be sure that you are running Buster Operating System.

	Make sure that your user is part of the gpio group.

Known Issues

	Library may or may not work in Linux 64-bit platforms

	Raspberry PI-ZERO does not provide reliable readings

	Readings in FeatherS2 does not work as expected.

Basics

Of course, you must import the library to use it:

import adafruit_dht

The DHT type devices use single data wire, so import the board pin

from board import <pin>

Now, to initialize the DHT11 device:

dht_device = adafruit_dht.DHT11(<pin>)

OR initialize the DHT22 device:

dht_device = adafruit_dht.DHT22(<pin>)

Read temperature and humidity

Now get the temperature and humidity values

temperature = dht_device.temperature
humidity = dht_device.humidity

These properties may raise an exception if a problem occurs. You should use try/raise
logic and catch RuntimeError and then retry getting the values after at least 2 seconds.
If you try again to get a result within 2 seconds, cached values are returned.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_DHT/blob/main/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

	DHT to Led Display

	Time calibration advance test

API Reference

	adafruit_dhtlib

Tutorials

	DHT basic temperature-humidity sensor Learning Guide [https://learn.adafruit.com/dht]

Related Products

	DHT11 basic temperature-humidity sensor + extras [https://www.adafruit.com/product/386]

	DHT22 basic temperature-humidity sensor + extras [https://www.adafruit.com/product/385]

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_DHT/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/dht_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import adafruit_dht

Initial the dht device, with data pin connected to:
dhtDevice = adafruit_dht.DHT22(board.D18)

you can pass DHT22 use_pulseio=False if you wouldn't like to use pulseio.
This may be necessary on a Linux single board computer like the Raspberry Pi,
but it will not work in CircuitPython.
dhtDevice = adafruit_dht.DHT22(board.D18, use_pulseio=False)

while True:
 try:
 # Print the values to the serial port
 temperature_c = dhtDevice.temperature
 temperature_f = temperature_c * (9 / 5) + 32
 humidity = dhtDevice.humidity
 print(
 "Temp: {:.1f} F / {:.1f} C Humidity: {}% ".format(
 temperature_f, temperature_c, humidity
)
)

 except RuntimeError as error:
 # Errors happen fairly often, DHT's are hard to read, just keep going
 print(error.args[0])
 time.sleep(2.0)
 continue
 except Exception as error:
 dhtDevice.exit()
 raise error

 time.sleep(2.0)

DHT to Led Display

Example of reading temperature and humidity from a DHT device
and displaying results to the serial port and a 8 digit 7-segment display

examples/dht_to_led_display.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
example of reading temperature and humidity from a DHT device
and displaying results to the serial port and a 8 digit 7-segment display
the DHT device data wire is connected to board.D2
"""
import for dht devices and 7-segment display devices
import time
from board import D2, TX, RX, D1
import busio
import digitalio
from adafruit_max7219 import bcddigits
import adafruit_dht

clk = RX
din = TX
cs = digitalio.DigitalInOut(D1)
spi = busio.SPI(clk, MOSI=din)
display = bcddigits.BCDDigits(spi, cs, nDigits=8)
display.brightness(5)

initial the dht device
dhtDevice = adafruit_dht.DHT22(D2)

while True:
 try:
 # show the values to the serial port
 temperature = dhtDevice.temperature * (9 / 5) + 32
 humidity = dhtDevice.humidity
 # print("Temp: {:.1f} F Humidity: {}% ".format(temperature, humidity))

 # now show the values on the 8 digit 7-segment display
 display.clear_all()
 display.show_str(0, "{:5.1f}{:5.1f}".format(temperature, humidity))
 display.show()

 except RuntimeError as error:
 print(error.args[0])

 time.sleep(2.0)

Time calibration advance test

Example to identify best waiting time for the sensor

examples/dht_time_calibration_advance.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109

	# SPDX-FileCopyrightText: 2021 yeyeto2788 for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This script let's you check the best timing for you sensor as other people have face timing issues
as seen on issue https://github.com/adafruit/Adafruit_CircuitPython_DHT/issues/66.

By changing the variables values below you will be able to check the best timing for you sensor,
take into account that by most datasheets the timing for the sensor are 0.001 DHT22 and
0.018 for DHT11 which are the default values of the library.
"""

import json
import time

import board

import adafruit_dht

Change the pin used below
pin_to_use = "PG6"

Maximum number of tries per timing
max_retries_per_time = 10
Minimum wait time from where to start testing
min_time = 1500
Maximum wait time on where to stop testing
max_time = 2000
Increment on time
time_increment = 100

Variable to store all reads on a try
reads = {}

initial_msg = f"""
\nInitializing test with the following parameters:

- Maximum retries per waiting time: {max_retries_per_time}
- Start time (ms): {min_time}
- End time (ms): {max_time}
- Increment time (ms): {time_increment}

This execution will try to read the sensor {max_retries_per_time} times
for {len(range(min_time, max_time, time_increment))} different wait times values.

"""
Print initial message on the console.
print(initial_msg)

for milliseconds in range(min_time, max_time, time_increment):
 # Instantiate the DHT11 object.
 dhtDevice = adafruit_dht.DHT11(pin=getattr(board, pin_to_use))
 # Change the default wait time for triggering the read.
 # pylint: disable=protected-access
 dhtDevice._trig_wait = milliseconds

 # pylint: disable=protected-access
 print(f"Using 'trig_wait' of {dhtDevice._trig_wait}")
 # Reset the read count for next loop
 reads_count = 0

 # Create the key on the reads dictionary with the milliseconds used on
 # this try.
 if milliseconds not in reads:
 reads[milliseconds] = {"total_reads": 0}

 for try_number in range(0, max_retries_per_time):
 try:
 # Read temperature and humidity
 temperature = dhtDevice.temperature
 humidity = dhtDevice.humidity
 read_values = {"temperature": temperature, "humidity": humidity}

 if try_number not in reads[milliseconds]:
 reads[milliseconds][try_number] = read_values

 reads_count += 1
 except RuntimeError as e:
 time.sleep(2)
 else:
 time.sleep(1)

 reads[milliseconds]["total_reads"] = reads_count

 print(f"Total read(s): {reads[milliseconds]['total_reads']}\n")
 dhtDevice.exit()

Gather the highest read numbers from all reads done.
best_result = max(
 [
 reads[milliseconds]["total_reads"]
 for milliseconds in reads # pylint: disable=consider-using-dict-items
]
)
Gather best time(s) in milliseconds where we got more reads
best_times = [
 milliseconds
 for milliseconds in reads # pylint: disable=consider-using-dict-items
 if reads[milliseconds]["total_reads"] == best_result
]
print(
 f"Maximum reads: {best_result} out of {max_retries_per_time} with the "
 f"following times: {', '.join([str(t) for t in best_times])}"
)

change the value on the line below to see all reads performed.
print_all = False
if print_all:
 print(json.dumps(reads))

adafruit_dhtlib

CircuitPython support for the DHT11 and DHT22 temperature and humidity devices.

	Author(s): Mike McWethy

Hardware:

	Adafruit DHT22 temperature-humidity sensor + extras [https://www.adafruit.com/product/385] (Product ID: 385)

	Adafruit DHT11 basic temperature-humidity sensor + extras [https://www.adafruit.com/product/386] (Product ID: 386)

Software and Dependencies:

	Adafruit CircuitPython firmware for the supported boards:
https://circuitpython.org/downloads

	
class adafruit_dht.DHT11(pin, use_pulseio=True)[source]

	Support for DHT11 device.

	Parameters

	pin (Pin) – digital pin used for communication

	
class adafruit_dht.DHT22(pin, use_pulseio=True)[source]

	Support for DHT22 device.

	Parameters

	pin (Pin) – digital pin used for communication

	
class adafruit_dht.DHTBase(dht11, pin, trig_wait, use_pulseio)[source]

	base support for DHT11 and DHT22 devices

	
exit()[source]

	Cleans up the PulseIn process. Must be called explicitly

	
humidity

	humidity current reading. It makes sure a reading is available

Raises RuntimeError exception for checksum failure and for insufficient
data returned from the device (try again)

	
measure()[source]

	measure runs the communications to the DHT11/22 type device.
if successful, the class properties temperature and humidity will
return the reading returned from the device.

Raises RuntimeError exception for checksum failure and for insufficient
data returned from the device (try again)

	
temperature

	temperature current reading. It makes sure a reading is available

Raises RuntimeError exception for checksum failure and for insufficient
data returned from the device (try again)

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 adafruit_dht	

Index

 A
 | D
 | E
 | H
 | M
 | T

A

 	
 	adafruit_dht (module)

D

 	
 	DHT11 (class in adafruit_dht)

 	
 	DHT22 (class in adafruit_dht)

 	DHTBase (class in adafruit_dht)

E

 	
 	exit() (adafruit_dht.DHTBase method)

H

 	
 	humidity (adafruit_dht.DHTBase attribute)

M

 	
 	measure() (adafruit_dht.DHTBase method)

T

 	
 	temperature (adafruit_dht.DHTBase attribute)

 Source code for adafruit_dht

SPDX-FileCopyrightText: 2017 Mike McWethy for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
:mod:`adafruit_dhtlib`
======================

CircuitPython support for the DHT11 and DHT22 temperature and humidity devices.

* Author(s): Mike McWethy

Hardware:

* Adafruit `DHT22 temperature-humidity sensor + extras
 <https://www.adafruit.com/product/385>`_ (Product ID: 385)

* Adafruit `DHT11 basic temperature-humidity sensor + extras
 <https://www.adafruit.com/product/386>`_ (Product ID: 386)

Software and Dependencies:

* Adafruit CircuitPython firmware for the supported boards:
 https://circuitpython.org/downloads

"""

import array
import time
from os import uname
from digitalio import DigitalInOut, Pull, Direction

_USE_PULSEIO = False
try:
 from pulseio import PulseIn

 _USE_PULSEIO = True
except (ImportError, NotImplementedError):
 pass # This is OK, we'll try to bitbang it!

__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_DHT.git"

[docs]class DHTBase:
 """base support for DHT11 and DHT22 devices"""

 __hiLevel = 51

 def __init__(self, dht11, pin, trig_wait, use_pulseio):
 """
 :param boolean dht11: True if device is DHT11, otherwise DHT22.
 :param ~board.Pin pin: digital pin used for communication
 :param int trig_wait: length of time to hold trigger in LOW state (microseconds)
 :param boolean use_pulseio: False to force bitbang when pulseio available (only with Blinka)
 """
 self._dht11 = dht11
 self._pin = pin
 self._trig_wait = trig_wait
 self._last_called = 0
 self._humidity = None
 self._temperature = None
 self._use_pulseio = use_pulseio
 if "Linux" not in uname() and not self._use_pulseio:
 raise Exception("Bitbanging is not supported when using CircuitPython.")
 # We don't use a context because linux-based systems are sluggish
 # and we're better off having a running process
 if self._use_pulseio:
 self.pulse_in = PulseIn(self._pin, 81, True)
 self.pulse_in.pause()

[docs] def exit(self):
 """ Cleans up the PulseIn process. Must be called explicitly """
 if self._use_pulseio:
 print("De-initializing self.pulse_in")
 self.pulse_in.deinit()

 def _pulses_to_binary(self, pulses, start, stop):
 """Takes pulses, a list of transition times, and converts
 them to a 1's or 0's. The pulses array contains the transition times.
 pulses starts with a low transition time followed by a high transistion time.
 then a low followed by a high and so on. The low transition times are
 ignored. Only the high transition times are used. If the high
 transition time is greater than __hiLevel, that counts as a bit=1, if the
 high transition time is less that __hiLevel, that counts as a bit=0.

 start is the starting index in pulses to start converting

 stop is the index to convert upto but not including

 Returns an integer containing the converted 1 and 0 bits
 """

 binary = 0
 hi_sig = False
 for bit_inx in range(start, stop):
 if hi_sig:
 bit = 0
 if pulses[bit_inx] > self.__hiLevel:
 bit = 1
 binary = binary << 1 | bit

 hi_sig = not hi_sig

 return binary

 def _get_pulses_pulseio(self):
 """_get_pulses implements the communication protocol for
 DHT11 and DHT22 type devices. It sends a start signal
 of a specific length and listens and measures the
 return signal lengths.

 return pulses (array.array uint16) contains alternating high and low
 transition times starting with a low transition time. Normally
 pulses will have 81 elements for the DHT11/22 type devices.
 """
 pulses = array.array("H")
 if self._use_pulseio:
 # The DHT type device use a specialize 1-wire protocol
 # The microprocessor first sends a LOW signal for a
 # specific length of time. Then the device sends back a
 # series HIGH and LOW signals. The length the HIGH signals
 # represents the device values.
 self.pulse_in.clear()
 self.pulse_in.resume(self._trig_wait)

 # loop until we get the return pulse we need or
 # time out after 1/4 second
 time.sleep(0.25)
 self.pulse_in.pause()
 while self.pulse_in:
 pulses.append(self.pulse_in.popleft())
 return pulses

 def _get_pulses_bitbang(self):
 """_get_pulses implements the communication protcol for
 DHT11 and DHT22 type devices. It sends a start signal
 of a specific length and listens and measures the
 return signal lengths.

 return pulses (array.array uint16) contains alternating high and low
 transition times starting with a low transition time. Normally
 pulses will have 81 elements for the DHT11/22 type devices.
 """
 pulses = array.array("H")
 with DigitalInOut(self._pin) as dhtpin:
 # we will bitbang if no pulsein capability
 transitions = []
 # Signal by setting pin high, then low, and releasing
 dhtpin.direction = Direction.OUTPUT
 dhtpin.value = True
 time.sleep(0.1)
 dhtpin.value = False
 # Using the time to pull-down the line according to DHT Model
 time.sleep(self._trig_wait / 1000000)
 timestamp = time.monotonic() # take timestamp
 dhtval = True # start with dht pin true because its pulled up
 dhtpin.direction = Direction.INPUT

 try:
 dhtpin.pull = Pull.UP
 # Catch the NotImplementedError raised because
 # blinka.microcontroller.generic_linux.libgpiod_pin does not support
 # internal pull resistors.
 except NotImplementedError:
 dhtpin.pull = None

 while time.monotonic() - timestamp < 0.25:
 if dhtval != dhtpin.value:
 dhtval = not dhtval # we toggled
 transitions.append(time.monotonic()) # save the timestamp
 # convert transtions to microsecond delta pulses:
 # use last 81 pulses
 transition_start = max(1, len(transitions) - 81)
 for i in range(transition_start, len(transitions)):
 pulses_micro_sec = int(1000000 * (transitions[i] - transitions[i - 1]))
 pulses.append(min(pulses_micro_sec, 65535))
 return pulses

[docs] def measure(self):
 """measure runs the communications to the DHT11/22 type device.
 if successful, the class properties temperature and humidity will
 return the reading returned from the device.

 Raises RuntimeError exception for checksum failure and for insufficient
 data returned from the device (try again)
 """
 delay_between_readings = 2 # 2 seconds per read according to datasheet
 # Initiate new reading if this is the first call or if sufficient delay
 # If delay not sufficient - return previous reading.
 # This allows back to back access for temperature and humidity for same reading
 if (
 self._last_called == 0
 or (time.monotonic() - self._last_called) > delay_between_readings
):
 self._last_called = time.monotonic()

 new_temperature = 0
 new_humidity = 0

 if self._use_pulseio:
 pulses = self._get_pulses_pulseio()
 else:
 pulses = self._get_pulses_bitbang()
 # print(len(pulses), "pulses:", [x for x in pulses])

 if len(pulses) < 10:
 # Probably a connection issue!
 raise RuntimeError("DHT sensor not found, check wiring")

 if len(pulses) < 80:
 # We got *some* data just not 81 bits
 raise RuntimeError("A full buffer was not returned. Try again.")

 buf = array.array("B")
 for byte_start in range(0, 80, 16):
 buf.append(self._pulses_to_binary(pulses, byte_start, byte_start + 16))

 if self._dht11:
 # humidity is 1 byte
 new_humidity = buf[0]
 # temperature is 1 byte
 new_temperature = buf[2]
 else:
 # humidity is 2 bytes
 new_humidity = ((buf[0] << 8) | buf[1]) / 10
 # temperature is 2 bytes
 # MSB is sign, bits 0-14 are magnitude)
 new_temperature = (((buf[2] & 0x7F) << 8) | buf[3]) / 10
 # set sign
 if buf[2] & 0x80:
 new_temperature = -new_temperature
 # calc checksum
 chk_sum = 0
 for b in buf[0:4]:
 chk_sum += b

 # checksum is the last byte
 if chk_sum & 0xFF != buf[4]:
 # check sum failed to validate
 raise RuntimeError("Checksum did not validate. Try again.")

 if new_humidity < 0 or new_humidity > 100:
 # We received unplausible data
 raise RuntimeError("Received unplausible data. Try again.")

 self._temperature = new_temperature
 self._humidity = new_humidity

 @property
 def temperature(self):
 """temperature current reading. It makes sure a reading is available

 Raises RuntimeError exception for checksum failure and for insufficient
 data returned from the device (try again)
 """
 self.measure()
 return self._temperature

 @property
 def humidity(self):
 """humidity current reading. It makes sure a reading is available

 Raises RuntimeError exception for checksum failure and for insufficient
 data returned from the device (try again)
 """
 self.measure()
 return self._humidity

[docs]class DHT11(DHTBase):
 """Support for DHT11 device.

 :param ~board.Pin pin: digital pin used for communication
 """

 def __init__(self, pin, use_pulseio=_USE_PULSEIO):
 super().__init__(True, pin, 18000, use_pulseio)

[docs]class DHT22(DHTBase):
 """Support for DHT22 device.

 :param ~board.Pin pin: digital pin used for communication
 """

 def __init__(self, pin, use_pulseio=_USE_PULSEIO):
 super().__init__(False, pin, 1000, use_pulseio)

 All modules for which code is available

	adafruit_dht

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 DHT to Led Display

 		
 Time calibration advance test

 		
 adafruit_dhtlib

_static/up.png

_static/up-pressed.png

