
CircuitPython Documentation
Release 7.3.3

CircuitPython Contributors

Aug 30, 2022

API AND USAGE

1 CircuitPython 3
1.1 Get CircuitPython . 3
1.2 Documentation . 4
1.3 Code Search . 4
1.4 Contributing . 4
1.5 Branding . 4
1.6 Differences from MicroPython . 5

1.6.1 Behavior . 5
1.6.2 API . 5
1.6.3 Modules . 6

1.7 Project Structure . 6
1.7.1 Core . 6
1.7.2 Ports . 6
1.7.3 Boards . 7

1.8 Full Table of Contents . 7
1.8.1 Core Modules . 7
1.8.2 Supported Ports . 233
1.8.3 Troubleshooting . 243
1.8.4 Additional CircuitPython Libraries and Drivers on GitHub 244
1.8.5 Design Guide . 245
1.8.6 Architecture . 257
1.8.7 Porting . 257
1.8.8 Adding *io support to other ports . 259
1.8.9 MicroPython libraries . 261
1.8.10 Glossary . 297
1.8.11 CircuitPython . 300
1.8.12 Contributing . 304
1.8.13 Building CircuitPython . 305
1.8.14 Building . 306
1.8.15 Testing . 306
1.8.16 Debugging . 306
1.8.17 Code Quality Checks . 307
1.8.18 Adafruit Community Code of Conduct . 307
1.8.19 MicroPython & CircuitPython license information . 309
1.8.20 WebUSB Serial Support . 310

2 Indices and tables 313

Python Module Index 315

i

Index 317

ii

CircuitPython Documentation, Release 7.3.3

Welcome to the API reference documentation for Adafruit CircuitPython. This contains low-level API reference docs
which may link out to separate “getting started” guides. Adafruit has many excellent tutorials available through the
Adafruit Learning System.

API AND USAGE 1

https://adafruit.com
https://learn.adafruit.com/

CircuitPython Documentation, Release 7.3.3

2 API AND USAGE

CHAPTER

ONE

CIRCUITPYTHON

circuitpython.org | Get CircuitPython | Documentation | Contributing | Branding | Differences from Micropython |
Project Structure

CircuitPython is a beginner friendly, open source version of Python for tiny, inexpensive computers called microcon-
trollers. Microcontrollers are the brains of many electronics including a wide variety of development boards used to
build hobby projects and prototypes. CircuitPython in electronics is one of the best ways to learn to code because it
connects code to reality. Simply install CircuitPython on a supported USB board usually via drag and drop and then
edit a code.py file on the CIRCUITPY drive. The code will automatically reload. No software installs are needed
besides a text editor (we recommend Mu for beginners.)

Starting with CircuitPython 7.0.0, some boards may only be connectable over Bluetooth Low Energy (BLE). Those
boards provide serial and file access over BLE instead of USB using open protocols. (Some boards may use both USB
and BLE.) BLE access can be done from a variety of apps including code.circuitpython.org.

CircuitPython features unified Python core APIs and a growing list of 300+ device libraries and drivers that work with
it. These libraries also work on single board computers with regular Python via the Adafruit Blinka Library.

CircuitPython is based on MicroPython. See below for differences. Most, but not all, CircuitPython development is
sponsored by Adafruit and is available on their educational development boards. Please support both MicroPython and
Adafruit.

1.1 Get CircuitPython

Official binaries for all supported boards are available through circuitpython.org/downloads. The site includes stable,
unstable and continuous builds. Full release notes are available through GitHub releases as well.

3

https://github.com/adafruit/circuitpython/actions?query=branch%3Amain
http://circuitpython.readthedocs.io/
https://choosealicense.com/licenses/mit/
https://adafru.it/discord
https://hosted.weblate.org/engage/circuitpython/?utm_source=widget
https://circuitpython.org
https://codewith.mu/
https://code.circuitpython.org
https://github.com/adafruit/Adafruit_Blinka
https://micropython.org
https://adafruit.com
https://circuitpython.org/downloads
https://github.com/adafruit/circuitpython/releases

CircuitPython Documentation, Release 7.3.3

1.2 Documentation

Guides and videos are available through the Adafruit Learning System under the CircuitPython category. An API ref-
erence is also available on Read the Docs. A collection of awesome resources can be found at Awesome CircuitPython.

Specifically useful documentation when starting out:

• Welcome to CircuitPython

• CircuitPython Essentials

• Example Code

1.3 Code Search

GitHub doesn’t currently support code search on forks. Therefore, CircuitPython doesn’t have code search through
GitHub because it is a fork of MicroPython. Luckily, SourceGraph has free code search for public repos like Circuit-
Python. So, visit sourcegraph.com/github.com/adafruit/circuitpython to search the CircuitPython codebase online.

1.4 Contributing

See CONTRIBUTING.md for full guidelines but please be aware that by contributing to this project you are agreeing
to the Code of Conduct. Contributors who follow the Code of Conduct are welcome to submit pull requests and they
will be promptly reviewed by project admins. Please join the Discord too.

1.5 Branding

While we are happy to see CircuitPython forked and modified, we’d appreciate it if forked releases not use the name
“CircuitPython” or the Blinka logo. “CircuitPython” means something special to us and those who learn about it. As
a result, we’d like to make sure products referring to it meet a common set of requirements.

If you’d like to use the term “CircuitPython” and Blinka for your product here is what we ask:

• Your product is supported by the primary “adafruit/circuitpython” repo. This way we can update any custom
code as we update the CircuitPython internals.

• Your product is listed on circuitpython.org (source here). This is to ensure that a user of your product can always
download the latest version of CircuitPython from the standard place.

• Your product has a user accessible USB plug which appears as a CIRCUITPY drive when plugged in AND/OR
provides file and serial access over Bluetooth Low Energy. Boards that do not support USB should be clearly
marked as BLE-only CircuitPython.

If you choose not to meet these requirements, then we ask you call your version of CircuitPython something else
(for example, SuperDuperPython) and not use the Blinka logo. You can say it is “CircuitPython-compatible” if most
CircuitPython drivers will work with it.

4 Chapter 1. CircuitPython

https://learn.adafruit.com/
https://learn.adafruit.com/category/circuitpython
http://circuitpython.readthedocs.io/en/latest/?
https://github.com/adafruit/awesome-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/circuitpython-essentials
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CircuitPython_Essentials
https://sourcegraph.com/github.com/adafruit/circuitpython
https://sourcegraph.com/github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/blob/main/CONTRIBUTING.md
https://github.com/adafruit/circuitpython/blob/main/CODE_OF_CONDUCT.md
https://github.com/adafruit/circuitpython/blob/main/CODE_OF_CONDUCT.md
https://adafru.it/discord
https://github.com/adafruit/circuitpython
https://circuitpython.org
https://github.com/adafruit/circuitpython-org/

CircuitPython Documentation, Release 7.3.3

1.6 Differences from MicroPython

CircuitPython:

• Supports native USB on most boards and BLE otherwise, allowing file editing without special tools.

• Floats (aka decimals) are enabled for all builds.

• Error messages are translated into 10+ languages.

• Concurrency within Python is not well supported. Interrupts and threading are disabled. async/await keywords
are available on some boards for cooperative multitasking. Some concurrency is achieved with native modules
for tasks that require it such as audio file playback.

1.6.1 Behavior

• The order that files are run and the state that is shared between them. CircuitPython’s goal is to clarify the role
of each file and make each file independent from each other.

– boot.py runs only once on start up before USB is initialized. This lays the ground work for configuring
USB at startup rather than it being fixed. Since serial is not available, output is written to boot_out.txt.

– code.py (or main.py) is run after every reload until it finishes or is interrupted. After it is done running,
the vm and hardware is reinitialized. This means you cannot read state from code.py in the REPL
anymore, as the REPL is a fresh vm. CircuitPython’s goal for this change includes reducing confusion
about pins and memory being used.

– After the main code is finished the REPL can be entered by pressing any key.

– Autoreload state will be maintained across reload.

• Adds a safe mode that does not run user code after a hard crash or brown out. This makes it possible to fix code
that causes nasty crashes by making it available through mass storage after the crash. A reset (the button) is
needed after it’s fixed to get back into normal mode.

• RGB status LED indicating CircuitPython state.

• Re-runs code.py or other main file after file system writes over USB mass storage. (Disable with supervisor.
disable_autoreload())

• Autoreload is disabled while the REPL is active.

• Main is one of these: code.txt, code.py, main.py, main.txt

• Boot is one of these: boot.py, boot.txt

1.6.2 API

• Unified hardware APIs. Documented on ReadTheDocs.

• API docs are Python stubs within the C files in shared-bindings.

• No machine API.

1.6. Differences from MicroPython 5

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html

CircuitPython Documentation, Release 7.3.3

1.6.3 Modules

• No module aliasing. (uos and utime are not available as os and time respectively.) Instead os, time, and
random are CPython compatible.

• New storage module which manages file system mounts. (Functionality from uos in MicroPython.)

• Modules with a CPython counterpart, such as time, os and random, are strict subsets of their CPython version.
Therefore, code from CircuitPython is runnable on CPython but not necessarily the reverse.

• tick count is available as time.monotonic()

1.7 Project Structure

Here is an overview of the top-level source code directories.

1.7.1 Core

The core code of MicroPython is shared amongst ports including CircuitPython:

• docs High level user documentation in Sphinx reStructuredText format.

• drivers External device drivers written in Python.

• examples A few example Python scripts.

• extmod Shared C code used in multiple ports’ modules.

• lib Shared core C code including externally developed libraries such as FATFS.

• logo The CircuitPython logo.

• mpy-cross A cross compiler that converts Python files to byte code prior to being run in MicroPython. Useful
for reducing library size.

• py Core Python implementation, including compiler, runtime, and core library.

• shared-bindings Shared definition of Python modules, their docs and backing C APIs. Ports must implement
the C API to support the corresponding module.

• shared-module Shared implementation of Python modules that may be based on common-hal.

• tests Test framework and test scripts.

• tools Various tools, including the pyboard.py module.

1.7.2 Ports

Ports include the code unique to a microcontroller line.

6 Chapter 1. CircuitPython

https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html
https://docs.python.org/3.4/library/time.html?highlight=time#module-time
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html#time.monotonic
https://github.com/micropython/micropython

CircuitPython Documentation, Release 7.3.3

Supported Support status
atmel-samd SAMD21 stable | SAMD51 stable
cxd56 stable
espressif ESP32-C3 beta | ESP32-S2 stable | ESP32-S3 beta
litex alpha
mimxrt10xx alpha
nrf stable
raspberrypi stable
stm F4 stable | others beta
unix alpha

• stable Highly unlikely to have bugs or missing functionality.

• beta Being actively improved but may be missing functionality and have bugs.

• alpha Will have bugs and missing functionality.

1.7.3 Boards

• Each port has a boards directory containing boards which belong to a specific microcontroller line.

• A list of native modules supported by a particular board can be found here.

Back to Top

1.8 Full Table of Contents

1.8.1 Core Modules

These core modules are intended on being consistent across ports and boards. A module may not exist on a port/board
if no underlying hardware support is present or if flash space is limited. For example, a microcontroller without analog
features will not have analogio. See the Module Support Matrix - Which Modules Are Available on Which Boards
page for a list of modules supported on each board.

Module Support Matrix - Which Modules Are Available on Which Boards

The following table lists the available built-in modules for each CircuitPython capable board, as well as each frozen
module included on it.

Board Modules Available

8086 Com-
mander

adafruit_bus_device, analogio, board , busio, digitalio, keypad , math ,
microcontroller, neopixel_write, nvm , onewireio, os, pwmio, rainbowio, random ,
rotaryio, rtc, storage, struct, supervisor, time, touchio, usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_hid, adafruit_sdcard

@sarfata
shIRtty

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

continues on next page

1.8. Full Table of Contents 7

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/sd/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
BLM
Badge

analogio, audiobusio, audiocore, audioio, board , busio, digitalio, math ,
microcontroller, neopixel_write, nvm , os, rainbowio, random , storage, struct,
supervisor, time, touchio, usb_cdc, usb_hid

Adafruit
Camera

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Adafruit
Circuit
Play-
ground
Bluefruit

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Adafruit
Circuit
Play-
ground
Express
4-H

adafruit_bus_device, adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio,
bitbangio, board , busio, countio, digitalio, errno, math , microcontroller,
neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random , rotaryio,
rtc, storage, struct, supervisor, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi
Frozen Modules: adafruit_circuitplayground, adafruit_hid, adafruit_lis3dh, adafruit_thermistor,
neopixel

Adafruit
Circuit-
Play-
ground
Express

adafruit_bus_device, adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio,
bitbangio, board , busio, countio, digitalio, errno, math , microcontroller,
neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random , rotaryio,
rtc, storage, struct, supervisor, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi
Frozen Modules: adafruit_circuitplayground, adafruit_hid, adafruit_lis3dh, adafruit_thermistor,
neopixel

Adafruit
Circuit-
Play-
ground
Express
with
Crickit
libraries

adafruit_bus_device, adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio,
board , busio, digitalio, errno, math , microcontroller, neopixel_write, nvm , os,
pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time,
touchio, traceback , usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_circuitplayground, adafruit_crickit, adafruit_lis3dh, adafruit_motor,
adafruit_seesaw, adafruit_thermistor, neopixel

continues on next page

8 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/circuitplayground/en/latest/
https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/lis3dh/en/latest/
https://docs.circuitpython.org/projects/thermistor/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/circuitplayground/en/latest/
https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/lis3dh/en/latest/
https://docs.circuitpython.org/projects/thermistor/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/circuitplayground/en/latest/
https://docs.circuitpython.org/projects/crickit/en/latest/
https://docs.circuitpython.org/projects/lis3dh/en/latest/
https://docs.circuitpython.org/projects/motor/en/latest/
https://docs.circuitpython.org/projects/seesaw/en/latest/
https://docs.circuitpython.org/projects/thermistor/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
Circuit-
Play-
ground
Express
with
displayio

analogio, audiobusio, audiocore, audioio, board , busio, digitalio, displayio, errno,
fontio, math , microcontroller, neopixel_write, nvm , os, pulseio, pwmio, rainbowio,
random , storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc,
usb_hid
Frozen Modules: adafruit_circuitplayground, adafruit_lis3dh, adafruit_thermistor, neopixel

Adafruit
CLUE
nRF52840
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Adafruit
Edge-
Badge

_bleio, _stage, adafruit_bus_device, adafruit_pixelbuf , alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, frequencyio, gamepadshift, getpass, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rotaryio, rtc, sdcardio, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: stage, ugame

Adafruit
Feather
Bluefruit
Sense

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Adafruit
Feather
ESP32-S2
TFT

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

continues on next page

1.8. Full Table of Contents 9

https://docs.circuitpython.org/projects/circuitplayground/en/latest/
https://docs.circuitpython.org/projects/lis3dh/en/latest/
https://docs.circuitpython.org/projects/thermistor/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
Feather
ESP32S2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Adafruit
Feather
ESP32S3
No
PSRAM

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib

Adafruit
Feather
M0
Adalogger

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Adafruit
Feather
M0 Basic

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Adafruit
Feather
M0 Ex-
press

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi

Adafruit
Feather
M0 Ex-
press with
Crickit
libraries

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, errno, math , microcontroller, neopixel_write, nvm , onewireio, os,
pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time,
touchio, traceback , usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_crickit, adafruit_motor, adafruit_seesaw, neopixel

Adafruit
Feather
M0
RFM69

adafruit_bus_device, analogio, board , busio, digitalio, math , microcontroller,
neopixel_write, nvm , os, pwmio, rainbowio, random , storage, struct, supervisor, time,
usb_cdc
Frozen Modules: adafruit_rfm69

Adafruit
Feather
M0
RFM9x

adafruit_bus_device, analogio, board , busio, digitalio, math , microcontroller,
neopixel_write, nvm , os, pwmio, rainbowio, random , storage, struct, supervisor, time,
usb_cdc
Frozen Modules: adafruit_rfm9x

continues on next page

10 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/crickit/en/latest/
https://docs.circuitpython.org/projects/motor/en/latest/
https://docs.circuitpython.org/projects/seesaw/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/rfm69/en/latest/
https://docs.circuitpython.org/projects/rfm9x/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
Feather
M4 CAN

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, canio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, frequencyio, getpass, gifio, i2cperipheral, json,
keypad , math , microcontroller, msgpack , neopixel_write, nvm , onewireio, os,
paralleldisplay, ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio,
rtc, sdcardio, sharpdisplay, storage, struct, supervisor, synthio, terminalio, time,
touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib

Adafruit
Feather
M4 Ex-
press

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
Feather
MIMXRT1011

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib
Frozen Modules: adafruit_esp32spi, adafruit_requests

Adafruit
Feather
nRF52840
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Adafruit
Feather
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 11

https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
Feather
STM32F405
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audiomp3, audiopwmio, binascii, bitbangio, bitmaptools, board , busio,
canio, digitalio, displayio, errno, fontio, framebufferio, getpass, gifio, json,
keypad , math , microcontroller, msgpack , neopixel_write, onewireio, os, pulseio,
pwmio, rainbowio, random , re, rgbmatrix, sdcardio, sdioio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, zlib

Adafruit
FunHouse

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: adafruit_display_text, adafruit_fakerequests, adafruit_portalbase,
adafruit_requests, neopixel

Adafruit
Gemma
M0

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Adafruit
Gemma
M0 PyCon
2018

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Adafruit
Grand
Cen-
tral M4
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, imagecapture, json,
keypad , math , microcontroller, msgpack , neopixel_write, nvm , onewireio, os,
paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sdioio, sharpdisplay, storage, struct, supervisor, synthio,
terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio,
watchdog, zlib

Adafruit
Hallow-
ing M4
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

12 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/display_text/en/latest/
https://docs.circuitpython.org/projects/fakerequests/en/latest/
https://docs.circuitpython.org/projects/portalbase/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
ItsyBitsy
M0 Ex-
press

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pwmio, rainbowio, random , rotaryio, rtc, storage,
struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi

Adafruit
ItsyBitsy
M4 Ex-
press

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio, bitmaptools, board ,
busio, countio, digitalio, displayio, errno, floppyio, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, json, keypad , math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
ItsyBitsy
nRF52840
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Adafruit
ItsyBitsy
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
KB2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
LED
Glasses
Driver
nRF52840

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, is31fl3741, json, keypad , math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 13

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
Macropad
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
MagTag

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: adafruit_display_text, adafruit_fakerequests, adafruit_lis3dh, adafruit_portalbase,
adafruit_requests, neopixel

Adafruit
Matrix
Portal M4

_bleio, adafruit_bus_device, adafruit_pixelbuf , alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio,
pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_esp32spi, adafruit_portalbase, adafruit_requests, neopixel

Adafruit
Metro
ESP32S2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Adafruit
Metro M0
Express

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm , os,
paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct,
supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi

continues on next page

14 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/display_text/en/latest/
https://docs.circuitpython.org/projects/fakerequests/en/latest/
https://docs.circuitpython.org/projects/lis3dh/en/latest/
https://docs.circuitpython.org/projects/portalbase/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/portalbase/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
Metro M4
Airlift Lite

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
Metro M4
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
Metro
nRF52840
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Adafruit
Monster
M4SK

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
NeoKey
Trinkey
M0

adafruit_pixelbuf , board , digitalio, math , microcontroller, neopixel_write, nvm ,
os, rainbowio, random , storage, struct, supervisor, time, touchio, usb_cdc, usb_hid ,
usb_midi
Frozen Modules: adafruit_hid, neopixel

Adafruit
NeoPixel
Trinkey
M0

adafruit_pixelbuf , board , digitalio, math , microcontroller, neopixel_write, nvm ,
os, rainbowio, random , storage, struct, supervisor, time, touchio, usb_cdc, usb_hid ,
usb_midi
Frozen Modules: adafruit_hid, neopixel

continues on next page

1.8. Full Table of Contents 15

https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
ProxLight
Trinkey
M0

adafruit_bus_device, adafruit_pixelbuf , board , busio, digitalio, math ,
microcontroller, neopixel_write, nvm , os, rainbowio, random , storage, struct,
supervisor, time, touchio, usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_apds9960, neopixel

Adafruit
Pybadge

_bleio, _stage, adafruit_bus_device, adafruit_pixelbuf , alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, frequencyio, gamepadshift, getpass, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rotaryio, rtc, sdcardio, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: stage, ugame

Adafruit
PyGamer

_bleio, _stage, adafruit_bus_device, adafruit_pixelbuf , alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, frequencyio, gamepadshift, getpass, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rotaryio, rtc, sdcardio, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: stage, ugame

Adafruit
PyPortal

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_display_text, adafruit_esp32spi, adafruit_fakerequests,
adafruit_portalbase, adafruit_requests, neopixel

Adafruit
PyPortal
Pynt

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_display_text, adafruit_esp32spi, adafruit_fakerequests,
adafruit_portalbase, adafruit_requests, neopixel

continues on next page

16 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/apds9960/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io
https://docs.circuitpython.org/projects/display_text/en/latest/
https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/fakerequests/en/latest/
https://docs.circuitpython.org/projects/portalbase/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/display_text/en/latest/
https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/fakerequests/en/latest/
https://docs.circuitpython.org/projects/portalbase/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
PyPortal
Titano

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_display_text, adafruit_esp32spi, adafruit_fakerequests,
adafruit_portalbase, adafruit_requests, neopixel

Adafruit
PyRuler

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Adafruit
QT Py
ESP32-S3
no psram

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib
Frozen Modules: adafruit_register, adafruit_requests, neopixel

Adafruit
QT Py
ESP32C3

_bleio, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomixer, binascii, bitbangio, bitmaptools, board , busio, canio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, i2cperipheral, ipaddress,
json, keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rtc, sdcardio, sharpdisplay,
socketpool, ssl, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, vectorio, watchdog, wifi, zlib

Adafruit
QT Py
ESP32S2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Adafruit
QT Py M0

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

continues on next page

1.8. Full Table of Contents 17

https://docs.circuitpython.org/projects/display_text/en/latest/
https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/fakerequests/en/latest/
https://docs.circuitpython.org/projects/portalbase/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Adafruit
QT Py M0
Haxpress

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi

Adafruit
QT Py
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
QT2040
Trinkey

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
Rotary
Trinkey
M0

adafruit_pixelbuf , board , digitalio, math , microcontroller, neopixel_write, nvm ,
os, rainbowio, random , rotaryio, storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid , usb_midi
Frozen Modules: adafruit_hid, neopixel

Adafruit
Slide
Trinkey
M0

adafruit_pixelbuf , analogio, board , digitalio, math , microcontroller,
neopixel_write, nvm , os, rainbowio, random , storage, struct, supervisor, time,
touchio, usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_hid, adafruit_simplemath, neopixel

Adafruit
Trellis M4
Express

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio, bitmaptools, board ,
busio, countio, digitalio, displayio, errno, floppyio, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, json, keypad , math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib

Adafruit
Trinket M0

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

continues on next page

18 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/simplemath/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

AITHinker
ESP32-
C3S_Kit

_bleio, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomixer, binascii, bitbangio, bitmaptools, board , busio, canio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, i2cperipheral, ipaddress,
json, keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rtc, sdcardio, sharpdisplay,
socketpool, ssl, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, vectorio, watchdog, wifi, zlib

AITHinker
ESP32-
C3S_Kit_2M

_bleio, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomixer, binascii, bitbangio, bitmaptools, board , busio, canio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, i2cperipheral, ipaddress,
json, keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rtc, sdcardio, sharpdisplay,
socketpool, ssl, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, vectorio, watchdog, wifi, zlib

Alori-
umTech
Evo M51

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

ARAM-
CON
Badge
2019

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

ARAM-
CON2
Badge

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Arduino
MKR Zero

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

continues on next page

1.8. Full Table of Contents 19

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Arduino
MKR1300

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid , usb_midi

Arduino
Nano 33
BLE

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Arduino
Nano 33
IoT

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid , usb_midi

Arduino
Nano
RP2040
Connect

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Arduino
Zero

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid , usb_midi

Artisense
Reference
Design
RD00

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Atelier-
DuMaker
nRF52840
Breakout

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

continues on next page

20 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

AT-
MegaZero
ESP32-S2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

BastBLE _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

BastWiFi adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board ,
busio, canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json, keypad ,
math , mdns, microcontroller, msgpack , nvm , onewireio, os, paralleldisplay, ps2io,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, socketpool, ssl, storage, struct, supervisor, synthio, terminalio,
time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi,
zlib

BDMI-
CRO
VINA-D21

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm , os,
paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct,
supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi

BDMI-
CRO
VINA-D51

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 21

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

BLE-SS
dev board
Multi
Sensor

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

BlueMi-
cro833

_bleio, adafruit_pixelbuf , analogio, atexit, audiocore, audiopwmio, board , busio,
digitalio, errno, getpass, keypad , math , microcontroller, neopixel_write, os,
pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time,
usb_cdc, usb_hid , watchdog

BlueMi-
cro840

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Capable
Robot Pro-
grammable
USB Hub

alarm , analogio, board , busio, digitalio, math , microcontroller, nvm , onewireio, os,
ps2io, pwmio, rainbowio, random , rtc, storage, struct, supervisor, time, usb_cdc,
watchdog, zlib

Cedar
Grove
String-
Car M0
Express

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid

Chal-
lenger NB
RP2040
WiFi

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Challenger
RP2040
LTE

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

22 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Challenger
RP2040
WiFi

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Circuit
Play-
ground
Express
Digi-Key
PyCon
2019

adafruit_bus_device, adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio,
bitbangio, board , busio, countio, digitalio, errno, math , microcontroller,
neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random , rotaryio,
rtc, storage, struct, supervisor, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi
Frozen Modules: adafruit_circuitplayground, adafruit_hid, adafruit_lis3dh, adafruit_thermistor,
neopixel

Circuit-
Brains
Basic

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi

Circuit-
Brains
Deluxe

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

CP Sapling
M0

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

CP Sapling
M0 w/ SPI
Flash

adafruit_pixelbuf , analogio, board , busio, digitalio, displayio, errno, fontio,
math , microcontroller, neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, terminalio,
time, touchio, traceback , usb_cdc, usb_hid , usb_midi

CP32-M4 _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio, bitmaptools, board ,
busio, countio, digitalio, displayio, errno, floppyio, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, json, keypad , math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 23

https://docs.circuitpython.org/projects/circuitplayground/en/latest/
https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/lis3dh/en/latest/
https://docs.circuitpython.org/projects/thermistor/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

CrumpS2 adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Cytron
Maker
Feather
AIoT S3

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

Cytron
Maker
Nano
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: neopixel, simpleio

Cytron
Maker Pi
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_motor, neopixel, simpleio

Diodes
Delight
Piunora

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , neopixel_write,
onewireio, os, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, zlib

continues on next page

24 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/simpleio/en/latest/
https://docs.circuitpython.org/projects/motor/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/simpleio/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Dy-
naLoRa_USB

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, pwmio, rainbowio, random , rotaryio, rtc, sdcardio, storage, struct,
supervisor, time, touchio, usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_rfm9x, neopixel

DynOSSAT-
EDU-EPS

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write,
nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rtc, storage,
struct, supervisor, terminalio, time, traceback , usb_cdc, usb_hid , usb_midi

DynOSSAT-
EDU-OBC

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

ELECF-
REAKS
PICO:ED

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_is31fl3731, adafruit_motor, adafruit_ticks, asyncio, elecfreaks_music,
neopixel, picoed

Electronic
Cats Bast
Pro Mini
M0

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Electronic
Cats Cat-
WAN
USBStick

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Elec-
tronic Cats
Hunter Cat
NFC

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi

Electronic
Cats NFC
Copy Cat

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor,
time, touchio, usb_cdc, usb_hid , usb_midi

continues on next page

1.8. Full Table of Contents 25

https://docs.circuitpython.org/projects/rfm9x/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/is31fl3731/en/latest/
https://docs.circuitpython.org/projects/motor/en/latest/
https://docs.circuitpython.org/projects/ticks/en/latest/
https://docs.circuitpython.org/projects/asyncio/en/latest/
https://github.com/elecfreaks/circuitpython_ef_music.git
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://github.com/elecfreaks/circuitpython_picoed.git

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Electronut
Labs Blip

_bleio, _stage, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio,
atexit, audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii,
bitbangio, bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Electronut
Labs Papyr

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Encoder-
Pad
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Escornabot
Makech

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid

ESP 12k
NodeMCU

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

ESP32-
C3-
DevKitM-
1

_bleio, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomixer, binascii, bitbangio, bitmaptools, board , busio, canio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, i2cperipheral, ipaddress,
json, keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rtc, sdcardio, sharpdisplay,
socketpool, ssl, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, vectorio, watchdog, wifi, zlib

continues on next page

26 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

ESP32-S2-
DevKitC-
1-N4

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

ESP32-S2-
DevKitC-
1-N4R2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

ESP32-S3-
Box-2.5

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib

ESP32-S3-
DevKitC-
1-N8

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib

ESP32-S3-
DevKitC-
1-N8R2

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib

continues on next page

1.8. Full Table of Contents 27

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

ESP32-S3-
DevKitC-
1-N8R8

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib

ESP32-S3-
DevKitM-
1-N8

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib

ESP32-
S3-USB-
OTG-N8

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib

Espruino
Pico

adafruit_pixelbuf , analogio, atexit, binascii, bitbangio, board , busio, digitalio,
displayio, errno, fontio, getpass, json, math , microcontroller, neopixel_write,
onewireio, os, pulseio, pwmio, rainbowio, random , re, sdcardio, storage, struct,
supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi, zlib

Espruino
Wifi

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pulseio, pwmio, rainbowio, random , re, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
usb_cdc, usb_hid , usb_midi, vectorio, zlib

Feather
ESP32S2
without
PSRAM

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: adafruit_register, adafruit_requests, neopixel

continues on next page

28 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Feather
MIMXRT1011

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib
Frozen Modules: adafruit_esp32spi, adafruit_requests

Feather
MIMXRT1062

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib

FeatherS2 adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

FeatherS2
Neo

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

FeatherS2
PreRelease

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

continues on next page

1.8. Full Table of Contents 29

https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

FeatherS3 _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

Fluff M0 analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Fomu adafruit_pixelbuf , aesio, atexit, binascii, digitalio, errno, getpass, json, keypad ,
math , microcontroller, msgpack , neopixel_write, os, rainbowio, random , re, storage,
struct, supervisor, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, zlib

Franzin-
inho WIFI
w/Wroom

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Franzin-
inho WIFI
w/Wrover

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Gravitech
Cucumber
M

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

continues on next page

30 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Gravitech
Cucumber
MS

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Gravitech
Cucumber
R

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Gravitech
Cucumber
RS

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Hacked
Feather
M0 Ex-
press with
8Mbyte
SPI flash

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm , os,
paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct,
supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi

HalloW-
ing M0
Express

adafruit_pixelbuf , analogio, audiocore, audioio, board , busio, digitalio,
displayio, errno, fontio, math , microcontroller, neopixel_write, nvm , onewireio, os,
paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct,
supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_lis3dh, neopixel

continues on next page

1.8. Full Table of Contents 31

https://docs.circuitpython.org/projects/lis3dh/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

HexKyS2 adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

HiiBot
BlueFi

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

HMI-
DevKit-1.1

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Iki-
gaiSense
Vita
nRF52840

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

iLabs
Challenger
840

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

continues on next page

32 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

iMX RT
1020 EVK

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib

iMX RT
1060 EVK

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb, usb_cdc, usb_hid , usb_host, usb_midi, vectorio, zlib

IMXRT1010-
EVK

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib
Frozen Modules: adafruit_esp32spi, adafruit_requests

IoTs2 adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

J&J
Studios
datum-
Distance

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

J&J
Studios
datum-
IMU

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

J&J
Studios
datum-
Light

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

J&J
Studios
datum-
Weather

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

continues on next page

1.8. Full Table of Contents 33

https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Kaluga 1 adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

keithp.com
snekboard

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi

LILYGO
TTGO
T-01C3

_bleio, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomixer, binascii, bitbangio, bitmaptools, board , busio, canio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, i2cperipheral, ipaddress,
json, keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rtc, sdcardio, sharpdisplay,
socketpool, ssl, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, vectorio, watchdog, wifi, zlib

LILYGO
TTGO
T-OI
PLUS

_bleio, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomixer, binascii, bitbangio, bitmaptools, board , busio, canio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, i2cperipheral, ipaddress,
json, keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rtc, sdcardio, sharpdisplay,
socketpool, ssl, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, vectorio, watchdog, wifi, zlib

LILYGO
TTGO T8
ESP32-S2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

continues on next page

34 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

LILYGO
TTGO T8
ESP32-S2
w/Display

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

LoC BeR
M4 base
board

alarm , analogio, board , busio, digitalio, math , microcontroller, neopixel_write,
nvm , onewireio, os, ps2io, pwmio, rainbowio, random , rotaryio, rtc, storage, struct,
supervisor, time, touchio, usb_cdc, usb_hid , usb_midi, watchdog, zlib

Maker-
diary M60
Keyboard

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Mak-
erdiary
nRF52840
M.2 De-
veloper
Kit

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Maker-
Diary
nRF52840
MDK

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Maker-
Diary
nRF52840
MDK USB
Dongle

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 35

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Mak-
erdiary
Pitaya Go

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

MDBT50Q-
DB-40

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

MDBT50Q-
RX Dongle

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Melopero
Shake
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Meow
Meow

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid , usb_midi

MEOW-
BIT

_stage, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomp3, audiopwmio, binascii, bitbangio, board , busio, digitalio, displayio,
errno, fontio, framebufferio, getpass, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pulseio, pwmio, rainbowio, random , re, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , usb_cdc, usb_hid , usb_midi, vectorio
Frozen Modules: stage, ugame

continues on next page

36 Chapter 1. CircuitPython

http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Metro
MIMXRT1011

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib
Frozen Modules: adafruit_esp32spi, adafruit_requests

micro:bit
v2

_bleio, aesio, analogio, atexit, audiobusio, audiocore, audiomixer, audiopwmio,
binascii, board , busio, digitalio, errno, getpass, math , microcontroller, onewireio,
os, pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor,
synthio, time, touchio, traceback , watchdog, zlib

MicroDev
microC3

_bleio, adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore,
audiomixer, binascii, bitbangio, bitmaptools, board , busio, canio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, i2cperipheral, ipaddress,
json, keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rtc, sdcardio, sharpdisplay,
socketpool, ssl, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, vectorio, watchdog, wifi, zlib

MicroDev
microS2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Mini SAM
M4

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio, bitmaptools, board ,
busio, countio, digitalio, displayio, errno, floppyio, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, json, keypad , math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_dotstar

continues on next page

1.8. Full Table of Contents 37

https://docs.circuitpython.org/projects/esp32spi/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/
https://docs.circuitpython.org/projects/dotstar/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

MOR-
PHEANS
MorphESP-
240

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

nanoESP32-
S2
w/Wrover

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

nanoESP32-
S2
w/Wroom

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

ndGarage[n°]
Bit6:
FeatherSnow-
v2

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

ndGarage[n°]Bit6:FeatherSnowanalogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

nice!nano _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

continues on next page

38 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

NUCLEO
STM32F746

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , onewireio, os, pulseio,
pwmio, rainbowio, random , re, sdcardio, sharpdisplay, storage, struct, supervisor,
terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio,
zlib

NUCLEO
STM32F767

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , onewireio, os, pulseio,
pwmio, rainbowio, random , re, sdcardio, sharpdisplay, storage, struct, supervisor,
terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio,
zlib

NUCLEO
STM32H743

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , onewireio, os,
rainbowio, random , re, sdcardio, sharpdisplay, storage, struct, supervisor,
terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio,
zlib

Oak
Dev Tech
BREAD2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Oak Dev
Tech Cast-
Away
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Oak Dev
Tech Pix-
elWing
ESP32S2

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

continues on next page

1.8. Full Table of Contents 39

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Open
Hardware
Summit
2020
Badge

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

OPENMV-
H7 R1

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , onewireio, os,
rainbowio, random , re, sdcardio, sharpdisplay, storage, struct, supervisor,
terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio,
zlib

Particle
Argon

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Particle
Boron

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Particle
Xenon

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

continues on next page

40 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

PCA10056
nRF52840-
DK

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

PCA10059
nRF52840
Dongle

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

PCA10100
nRF52833
DK

_bleio, analogio, atexit, audiobusio, audiocore, audiomixer, audiopwmio, board ,
busio, digitalio, errno, getpass, math , microcontroller, onewireio, os, pulseio,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
traceback , usb_cdc, usb_hid , watchdog

PewPew
10.2

_pew, analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm ,
os, pwmio, rainbowio, random , storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid
Frozen Modules: pew

PewPew
LCD

board , busio, digitalio, displayio, fontio, microcontroller, os, pwmio, random ,
storage, struct, supervisor, terminalio, time, touchio, usb_cdc
Frozen Modules: pew

PewPew
M4

_stage, analogio, audiocore, audioio, audiomixer, board , busio, digitalio, displayio,
fontio, keypad , math , microcontroller, nvm , onewireio, os, rainbowio, random , storage,
struct, supervisor, synthio, terminalio, time, watchdog, zlib
Frozen Modules: pew, stage, ugame

PicoPlanet analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Pimoroni
Badger
2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 41

https://github.com/pewpew-game/pew-pewpew-standalone-10.x.git
https://github.com/pypewpew/pew-pewpew-lcd.git
http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Pimoroni
Interstate
75

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Pimoroni
Keybow
2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Pimoroni
Motor
2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Pimoroni
PGA2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Pimoroni
Pico LiPo
(16MB)

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

42 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Pimoroni
Pico LiPo
(4MB)

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Pimoroni
PicoSys-
tem

_bleio, _stage, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio,
atexit, audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii,
bitbangio, bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno,
floppyio, fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: stage, ugame

Pimoroni
Plasma
2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Pimoroni
Servo 2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Pimoroni
Tiny 2040
(2MB)

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 43

http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Pimoroni
Tiny 2040
(8MB)

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

ProS3 _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

PYB LR
Nano V2

adafruit_pixelbuf , aesio, analogio, atexit, binascii, bitbangio, board , busio,
digitalio, displayio, errno, fontio, framebufferio, getpass, json, math ,
microcontroller, neopixel_write, os, pulseio, pwmio, rainbowio, random , re, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib

Py-
boardV1_1

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audiomp3, audiopwmio, binascii, bitbangio, bitmaptools, board , busio,
canio, digitalio, displayio, errno, fontio, framebufferio, getpass, gifio, json,
keypad , math , microcontroller, msgpack , neopixel_write, onewireio, os, pulseio,
pwmio, rainbowio, random , re, rgbmatrix, sdcardio, sdioio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, zlib

Py-
Cubedv04

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit, audiocore,
audioio, audiomixer, audiomp3, binascii, bitbangio, board , busio, countio, digitalio,
errno, floppyio, frequencyio, getpass, i2cperipheral, json, math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random ,
re, rotaryio, rtc, sdcardio, storage, struct, supervisor, synthio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, watchdog, zlib
Frozen Modules: adafruit_register, neopixel

PyCubedv04-
MRAM

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit, audiocore,
audioio, audiomixer, audiomp3, binascii, bitbangio, board , busio, countio, digitalio,
errno, floppyio, frequencyio, getpass, i2cperipheral, json, math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random ,
re, rotaryio, rtc, sdcardio, storage, struct, supervisor, synthio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, watchdog, zlib
Frozen Modules: adafruit_register, neopixel

continues on next page

44 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Py-
Cubedv05

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit, audiocore,
audioio, audiomixer, audiomp3, binascii, bitbangio, board , busio, countio, digitalio,
errno, floppyio, frequencyio, getpass, i2cperipheral, json, math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random ,
re, rotaryio, rtc, sdcardio, storage, struct, supervisor, synthio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, watchdog, zlib
Frozen Modules: adafruit_register, neopixel

PyCubedv05-
MRAM

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit, audiocore,
audioio, audiomixer, audiomp3, binascii, bitbangio, board , busio, countio, digitalio,
errno, floppyio, frequencyio, getpass, i2cperipheral, json, math , microcontroller,
msgpack , neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random ,
re, rotaryio, rtc, sdcardio, storage, struct, supervisor, synthio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, watchdog, zlib
Frozen Modules: adafruit_register, neopixel

PyKey 18
Numpad

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

PyKey 44
Ergo

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

PyKey 60 _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

continues on next page

1.8. Full Table of Contents 45

https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

PyKey 87
TKL

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Raspberry
Pi 4B

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , neopixel_write,
onewireio, os, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, zlib

Rasp-
berry Pi
Compute
Module 4

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , neopixel_write,
onewireio, os, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, zlib

Rasp-
berry Pi
Compute
Module 4
IO Board

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , neopixel_write,
onewireio, os, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, zlib

Raspberry
Pi Pico

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Raspberry
Pi Zero

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , neopixel_write,
onewireio, os, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, zlib

continues on next page

46 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Raspberry
Pi Zero
2W

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , neopixel_write,
onewireio, os, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, zlib

Raspberry
Pi Zero W

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , neopixel_write,
onewireio, os, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, zlib

Robo HAT
MM1 M4

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio, board , busio,
countio, digitalio, errno, floppyio, getpass, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rotaryio, rtc, sdcardio, storage, struct, supervisor, synthio,
time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, watchdog, zlib
Frozen Modules: neopixel

RP2.65-F _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_midi, neopixel

RP2040
Stamp

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_hid, adafruit_register, neopixel, stamp_carrier_board

continues on next page

1.8. Full Table of Contents 47

https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/midi/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://github.com/adafruit/circuitpython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

S2Mini adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

S2Pico adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

SAM E54
Xplained
Pro

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, canio, countio, digitalio, displayio, errno, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, rainbowio, random , re, rotaryio, rtc, sdcardio, sdioio, sharpdisplay,
storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, zlib

SAM32v26 _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib
Frozen Modules: neopixel

continues on next page

48 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Saola 1
w/Wroom

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Saola 1
w/Wrover

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Seeed
XIAO
nRF52840
Sense

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Seee-
duino Wio
Terminal

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Seeeduino
XIAO

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

Seeeduino
XIAO KB

analogio, board , digitalio, keypad , microcontroller, neopixel_write, nvm , os, pwmio,
rainbowio, random , rotaryio, storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid , usb_midi
Frozen Modules: adafruit_hid, neopixel

continues on next page

1.8. Full Table of Contents 49

https://docs.circuitpython.org/projects/hid/en/latest/
https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Seeeduino
XIAO
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

senseBox
MCU

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio, usb_cdc,
usb_hid

Serpente adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi

Silicogni-
tion LLC
M4-Shim

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Simmel _bleio, aesio, analogio, atexit, audiobusio, audiocore, audiopwmio, binascii,
bitbangio, board , busio, digitalio, json, math , microcontroller, os, pwmio, random ,
re, rtc, storage, struct, supervisor, time, traceback , usb_hid , watchdog

SparkFun
LU-
MIDrive

adafruit_pixelbuf , analogio, board , busio, digitalio, displayio, errno, fontio,
math , microcontroller, neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, terminalio,
time, touchio, traceback , usb_cdc, usb_hid , usb_midi
Frozen Modules: adafruit_dotstar

SparkFun
MicroMod
nRF52840
Processor

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

continues on next page

50 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/dotstar/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

SparkFun
MicroMod
RP2040
Processor

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

SparkFun
MicroMod
SAMD51
Processor

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

SparkFun
Pro Micro
RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Spark-
Fun Pro
nRF52840
Mini

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

SparkFun
Qwiic
Micro

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

SparkFun
RedBoard
Turbo

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm , os,
paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct,
supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi

SparkFun
SAMD21
Dev Break-
out

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

continues on next page

1.8. Full Table of Contents 51

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

SparkFun
SAMD21
Mini
Breakout

analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

SparkFun
STM32
MicroMod
Processor

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audiomp3, audiopwmio, binascii, bitbangio, bitmaptools, board , busio,
canio, digitalio, displayio, errno, fontio, framebufferio, getpass, gifio, json,
keypad , math , microcontroller, msgpack , neopixel_write, onewireio, os, pulseio,
pwmio, rainbowio, random , re, rgbmatrix, sdcardio, sdioio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, zlib

SparkFun
Teensy
MicroMod
Processor

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb, usb_cdc, usb_hid , usb_host, usb_midi, vectorio, zlib

SparkFun
Thing Plus
- RP2040

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

SparkFun
Thing Plus
- SAMD51

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

SparkFun
Thing Plus
- STM32

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audiomp3, audiopwmio, binascii, bitbangio, bitmaptools, board , busio,
canio, digitalio, displayio, errno, fontio, framebufferio, getpass, gifio, json,
keypad , math , microcontroller, msgpack , neopixel_write, onewireio, os, pulseio,
pwmio, rainbowio, random , re, rgbmatrix, sdcardio, sdioio, sharpdisplay, storage,
struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc,
usb_hid , usb_midi, vectorio, zlib

SPRE-
SENSE

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, board , busio, camera, digitalio, errno, getpass, gnss, json, math ,
microcontroller, onewireio, os, pulseio, pwmio, rainbowio, random , re, rtc, sdcardio,
sdioio, storage, struct, supervisor, time, traceback , ulab, usb_cdc, zlib

continues on next page

52 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Sprite_v2b adafruit_bus_device, adafruit_pixelbuf , alarm , analogio, atexit, binascii,
bitbangio, board , busio, countio, digitalio, errno, frequencyio, i2cperipheral,
json, math , microcontroller, neopixel_write, nvm , onewireio, os, pulseio, pwmio,
rainbowio, random , re, rtc, sdcardio, storage, struct, supervisor, time, traceback ,
usb_cdc, usb_hid , usb_midi, watchdog, zlib

SSCI
ISP1807
Dev Board

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

SSCI
ISP1807
Micro
Board

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

ST
STM32F746G
Discovery

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, atexit, binascii, bitbangio,
bitmaptools, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, msgpack , onewireio, os, pulseio,
pwmio, rainbowio, random , re, sdcardio, sharpdisplay, storage, struct, supervisor,
terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio,
zlib

StackR-
duino M0
PRO

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm , os,
paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc, storage, struct,
supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid , usb_midi

stm32f411ce-
blackpill

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pulseio, pwmio, rainbowio, random , re, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
usb_cdc, usb_hid , usb_midi, vectorio, zlib

stm32f411ce-
blackpill-
with-flash

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, audiocore,
audiomp3, audiopwmio, binascii, bitbangio, bitmaptools, board , busio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, json, keypad , math ,
microcontroller, msgpack , neopixel_write, onewireio, os, pulseio, pwmio, rainbowio,
random , re, sdcardio, sharpdisplay, storage, struct, supervisor, synthio, terminalio,
time, touchio, traceback , usb_cdc, usb_hid , usb_midi, vectorio, zlib

continues on next page

1.8. Full Table of Contents 53

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

STM32F411E_DISCOadafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, board , busio, digitalio, displayio, errno, fontio, framebufferio,
getpass, gifio, json, keypad , math , microcontroller, neopixel_write, onewireio,
os, pulseio, pwmio, rainbowio, random , re, sdcardio, sharpdisplay, storage, struct,
supervisor, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
zlib

STM32F412G_DISCO_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, audiocore,
audiomp3, audiopwmio, binascii, bitbangio, bitmaptools, board , busio, digitalio,
displayio, errno, fontio, framebufferio, getpass, gifio, json, keypad , math ,
microcontroller, msgpack , neopixel_write, onewireio, os, pulseio, pwmio, rainbowio,
random , re, sdcardio, sharpdisplay, storage, struct, supervisor, synthio, terminalio,
time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib

STM32F4_DISCO_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiocore, audiomp3, audiopwmio, binascii, bitbangio, bitmaptools, board , busio,
canio, digitalio, displayio, errno, fontio, framebufferio, getpass, gifio, json,
keypad , math , microcontroller, msgpack , neopixel_write, onewireio, os, pulseio,
pwmio, rainbowio, random , re, sdcardio, sdioio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, zlib

Swan R5 aesio, alarm , analogio, atexit, audiocore, audiomp3, audiopwmio, binascii, bitbangio,
board , busio, digitalio, errno, gamepadshift, getpass, json, keypad , math ,
microcontroller, msgpack , onewireio, os, pulseio, pwmio, rainbowio, random , re,
storage, struct, supervisor, synthio, time, touchio, traceback , ulab, usb_cdc, zlib

Targett
Mod-
ule Clip
w/Wroom

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

Targett
Mod-
ule Clip
w/Wrover

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

continues on next page

54 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

Teensy 4.0 _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb_cdc, usb_hid , usb_midi, vectorio, zlib

Teensy 4.1 _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, binascii,
bitbangio, bitmaptools, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, onewireio, os, pwmio, rainbowio, random , re, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, terminalio, time, touchio, traceback ,
ulab, usb, usb_cdc, usb_hid , usb_host, usb_midi, vectorio, zlib

Teknikio
Bluebird

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

TG-
Boards’
Datalore
IP M4

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

TG-Watch _bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib
Frozen Modules: adafruit_ble, adafruit_ble_apple_notification_center, adafruit_display_shapes,
adafruit_display_text, adafruit_drv2605, adafruit_ds3231, adafruit_focaltouch, adafruit_lc709203f,
adafruit_lsm6ds, adafruit_progressbar, adafruit_register, adafruit_st7789

continues on next page

1.8. Full Table of Contents 55

https://docs.circuitpython.org/projects/ble/en/latest/
https://docs.circuitpython.org/projects/ble_apple_notification_center/en/latest/
https://docs.circuitpython.org/projects/display-shapes/en/latest/
https://docs.circuitpython.org/projects/display_text/en/latest/
https://docs.circuitpython.org/projects/drv2605/en/latest/
https://docs.circuitpython.org/projects/ds3231/en/latest/
https://docs.circuitpython.org/projects/focaltouch/en/latest/
https://docs.circuitpython.org/projects/lc709203f/en/latest/
https://docs.circuitpython.org/projects/lsm6dsox/en/latest/
https://docs.circuitpython.org/projects/progressbar/en/latest/
https://docs.circuitpython.org/projects/register/en/latest/
https://docs.circuitpython.org/projects/st7789/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

The Open
Book
Feather

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, gamepadshift, getpass, gifio, i2cperipheral, json,
keypad , math , microcontroller, msgpack , neopixel_write, nvm , onewireio, os,
paralleldisplay, ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio,
rtc, sdcardio, sharpdisplay, storage, struct, supervisor, synthio, terminalio, time,
touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

THUN-
DER-
PACK_v11

adafruit_bus_device, adafruit_pixelbuf , analogio, atexit, audiocore, audiomp3,
audiopwmio, binascii, bitbangio, board , busio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio, random , re, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , usb_cdc, usb_hid , usb_midi

THUN-
DER-
PACK_v12

adafruit_bus_device, adafruit_pixelbuf , aesio, analogio, atexit, audiocore,
audiomp3, audiopwmio, binascii, bitbangio, board , busio, digitalio, displayio,
errno, fontio, framebufferio, getpass, gifio, json, keypad , math , microcontroller,
msgpack , neopixel_write, nvm , os, pulseio, pwmio, rainbowio, random , re, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_midi, vectorio

Tinker-
ingTech
Scout-
Makes
Azul

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

TinyS2 _stage, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

continues on next page

56 Chapter 1. CircuitPython

https://docs.circuitpython.org/projects/neopixel/en/latest/

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

TinyS3 _bleio, _stage, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio,
atexit, audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board ,
busio, canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, ipaddress, json, keypad , math , mdns,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, ps2io, pulseio, pwmio,
rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, socketpool,
ssl, storage, struct, supervisor, synthio, terminalio, time, touchio, traceback , ulab,
usb_cdc, usb_hid , usb_midi, vectorio, watchdog, wifi, zlib
Frozen Modules: neopixel

Trinket M0
Haxpress

adafruit_pixelbuf , analogio, audiobusio, audiocore, audioio, board , busio,
digitalio, displayio, errno, fontio, math , microcontroller, neopixel_write, nvm ,
onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio, random , rotaryio, rtc,
storage, struct, supervisor, terminalio, time, touchio, traceback , usb_cdc, usb_hid ,
usb_midi

TTGO T8
ESP32-S2-
WROOM

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, binascii, bitbangio, bitmaptools, board , busio,
canio, countio, digitalio, displayio, dualbank , errno, fontio, framebufferio,
frequencyio, getpass, gifio, i2cperipheral, imagecapture, ipaddress, json,
keypad , math , mdns, microcontroller, msgpack , neopixel_write, nvm , onewireio,
os, paralleldisplay, ps2io, pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix,
rotaryio, rtc, sdcardio, sharpdisplay, socketpool, ssl, storage, struct, supervisor,
synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid , usb_midi,
vectorio, watchdog, wifi, zlib

UART-
Logger
II

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audioio, audiomixer, audiomp3, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, floppyio, fontio,
framebufferio, frequencyio, getpass, gifio, i2cperipheral, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
ps2io, pulseio, pwmio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

uChip analogio, board , busio, digitalio, math , microcontroller, neopixel_write, nvm , os,
pwmio, rainbowio, random , rotaryio, rtc, storage, struct, supervisor, time, touchio,
usb_cdc, usb_hid , usb_midi

uGame10 _stage, analogio, audiocore, audioio, board , busio, digitalio, displayio, errno,
fontio, math , microcontroller, nvm , onewireio, os, pwmio, rainbowio, random , rotaryio,
storage, struct, supervisor, terminalio, time, traceback , usb_cdc
Frozen Modules: stage, ugame

continues on next page

1.8. Full Table of Contents 57

https://docs.circuitpython.org/projects/neopixel/en/latest/
http://circuitpython-stage.readthedocs.io
http://circuitpython-stage.readthedocs.io

CircuitPython Documentation, Release 7.3.3

Table 1 – continued from previous page
Board Modules Available

W5100S-
EVB-Pico

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

WarmBit
BluePixel
nRF52840

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, board , busio, countio, digitalio, displayio, errno, fontio,
framebufferio, getpass, gifio, json, keypad , math , microcontroller, msgpack ,
neopixel_write, nvm , onewireio, os, paralleldisplay, pulseio, pwmio, rainbowio,
random , re, rgbmatrix, rotaryio, rtc, sdcardio, sharpdisplay, storage, struct,
supervisor, synthio, terminalio, time, touchio, traceback , ulab, usb_cdc, usb_hid ,
usb_midi, vectorio, watchdog, zlib

Waveshare
RP2040-
Zero

_bleio, adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii, bitbangio,
bitmaptools, bitops, board , busio, countio, digitalio, displayio, errno, floppyio,
fontio, framebufferio, getpass, gifio, imagecapture, json, keypad , math ,
microcontroller, msgpack , neopixel_write, nvm , onewireio, os, paralleldisplay,
pulseio, pwmio, qrio, rainbowio, random , re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time, touchio,
traceback , ulab, usb_cdc, usb_hid , usb_midi, vectorio, watchdog, zlib

Win-
terbloom
Big Honk-
ing Button

adafruit_pixelbuf , analogio, audiocore, audioio, board , busio, digitalio, errno,
math , microcontroller, neopixel_write, nvm , onewireio, os, pulseio, pwmio, rainbowio,
random , rotaryio, storage, struct, supervisor, time, traceback , usb_cdc

Win-
terbloom
Sol

adafruit_bus_device, adafruit_pixelbuf , aesio, alarm , analogio, atexit, binascii,
bitbangio, board , busio, countio, digitalio, errno, floppyio, frequencyio, getpass,
json, math , microcontroller, msgpack , neopixel_write, nvm , onewireio, os, pulseio,
pwmio, rainbowio, random , re, rotaryio, rtc, sdcardio, storage, struct, supervisor,
time, traceback , ulab, usb_cdc, usb_midi, watchdog, zlib

XinaBox
CC03

adafruit_bus_device, board , busio, digitalio, math , microcontroller, nvm , os, pwmio,
rainbowio, random , rtc, storage, struct, supervisor, time, usb_cdc, usb_hid , usb_midi

XinaBox
CS11

adafruit_bus_device, board , busio, digitalio, math , microcontroller, nvm , os, pwmio,
rainbowio, random , sdcardio, storage, struct, supervisor, time, usb_cdc, usb_hid

58 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Modules

_bleio – Bluetooth Low Energy (BLE) communication

The _bleiomodule provides necessary low-level functionality for communicating using Bluetooth Low Energy (BLE).
The ‘_’ prefix indicates this module is meant for internal use by libraries but not by the end user. Its API may change
incompatibly between minor versions of CircuitPython. Please use the adafruit_ble CircuitPython library instead,
which builds on _bleio, and provides higher-level convenience functionality, including predefined beacons, clients,
servers.

_bleio.adapter :Adapter

BLE Adapter used to manage device discovery and connections. This object is the sole instance of _bleio.
Adapter.

exception _bleio.BluetoothError

Bases: Exception

Catchall exception for Bluetooth related errors.

Initialize self. See help(type(self)) for accurate signature.

exception _bleio.RoleError

Bases: BluetoothError

Raised when a resource is used as the mismatched role. For example, if a local CCCD is attempted to be set but
they can only be set when remote.

Initialize self. See help(type(self)) for accurate signature.

exception _bleio.SecurityError

Bases: BluetoothError

Raised when a security related error occurs.

Initialize self. See help(type(self)) for accurate signature.

_bleio.set_adapter(adapter: Optional[Adapter])→ None
Set the adapter to use for BLE, such as when using an HCI adapter. Raises NotImplementedError when the
adapter is a singleton and cannot be set.

class _bleio.Adapter(*, uart: busio.UART, rts: digitalio.DigitalInOut, cts: digitalio.DigitalInOut)
The BLE Adapter object manages the discovery and connection to other nearby Bluetooth Low Energy devices.
This part of the Bluetooth Low Energy Specification is known as Generic Access Profile (GAP).

Discovery of other devices happens during a scanning process that listens for small packets of information, known
as advertisements, that are broadcast unencrypted. The advertising packets have two different uses. The first is
to broadcast a small piece of data to anyone who cares and and nothing more. These are known as beacons.
The second class of advertisement is to promote additional functionality available after the devices establish a
connection. For example, a BLE heart rate monitor would advertise that it provides the standard BLE Heart Rate
Service.

The Adapter can do both parts of this process: it can scan for other device advertisements and it can advertise its
own data. Furthermore, Adapters can accept incoming connections and also initiate connections.

On boards that do not have native BLE, you can use an HCI co-processor. Pass the uart and pins used to com-
municate with the co-processor, such as an Adafruit AirLift. The co-processor must have been reset and put
into BLE mode beforehand by the appropriate pin manipulation. The uart, rts, and cts objects are used to
communicate with the HCI co-processor in HCI mode. The Adapter object is enabled during this call.

After instantiating an Adapter, call _bleio.set_adapter() to set _bleio.adapter

1.8. Full Table of Contents 59

https://circuitpython.readthedocs.io/projects/ble/en/latest/
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

On boards with native BLE, you cannot create an instance of _bleio.Adapter; this constructor will raise
NotImplementedError. Use _bleio.adapter to access the sole instance already available.

enabled :bool

State of the BLE adapter.

address :Address

MAC address of the BLE adapter.

name :str

name of the BLE adapter used once connected. The name is “CIRCUITPY” + the last four hex digits of
adapter.address, to make it easy to distinguish multiple CircuitPython boards.

advertising :bool

True when the adapter is currently advertising. (read-only)

connected :bool

True when the adapter is connected to another device regardless of who initiated the connection. (read-only)

connections :Tuple[Connection]

Tuple of active connections including those initiated through _bleio.Adapter.connect(). (read-only)

start_advertising(data: circuitpython_typing.ReadableBuffer, *, scan_response:
Optional[circuitpython_typing.ReadableBuffer] = None, connectable: bool = True,
anonymous: bool = False, timeout: int = 0, interval: float = 0.1, tx_power: int = 0,
directed_to: Optional[Address] = None)→ None

Starts advertising until stop_advertising is called or if connectable, another device connects to us.

Warning: If data is longer than 31 bytes, then this will automatically advertise as an extended adver-
tisement that older BLE 4.x clients won’t be able to scan for.

Note: If you set anonymous=True, then a timeout must be specified. If no timeout is specified, then the
maximum allowed timeout will be selected automatically.

Parameters

• data (ReadableBuffer) – advertising data packet bytes

• scan_response (ReadableBuffer) – scan response data packet bytes. None if no scan
response is needed.

• connectable (bool) – If True then other devices are allowed to connect to this peripheral.

• anonymous (bool) – If True then this device’s MAC address is randomized before adver-
tising.

• timeout (int) – If set, we will only advertise for this many seconds. Zero means no
timeout.

• interval (float) – advertising interval, in seconds

• int (tx_power) – transmitter power while advertising in dBm

• Address (directed_to) – peer to advertise directly to

60 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

CircuitPython Documentation, Release 7.3.3

stop_advertising()→ None
Stop sending advertising packets.

start_scan(prefixes: circuitpython_typing.ReadableBuffer = b'', *, buffer_size: int = 512, extended: bool =
False, timeout: Optional[float] = None, interval: float = 0.1, window: float = 0.1,
minimum_rssi: int = -80, active: bool = True)→ Iterable[ScanEntry]

Starts a BLE scan and returns an iterator of results. Advertisements and scan responses are filtered and
returned separately.

Parameters

• prefixes (ReadableBuffer) – Sequence of byte string prefixes to filter advertising pack-
ets with. A packet without an advertising structure that matches one of the prefixes is
ignored. Format is one byte for length (n) and n bytes of prefix and can be repeated.

• buffer_size (int) – the maximum number of advertising bytes to buffer.

• extended (bool) – When True, support extended advertising packets. Increasing
buffer_size is recommended when this is set.

• timeout (float) – the scan timeout in seconds. If None or zero, will scan until
stop_scan is called.

• interval (float) – the interval (in seconds) between the start of two consecutive scan
windows Must be in the range 0.0025 - 40.959375 seconds.

• window (float) – the duration (in seconds) to scan a single BLE channel. window must
be <= interval.

• minimum_rssi (int) – the minimum rssi of entries to return.

• active (bool) – retrieve scan responses for scannable advertisements.

Returns
an iterable of _bleio.ScanEntry objects

Return type
iterable

stop_scan()→ None
Stop the current scan.

connect(address: Address, *, timeout: float)→ Connection
Attempts a connection to the device with the given address.

Parameters

• address (Address) – The address of the peripheral to connect to

• timeout (float/int) – Try to connect for timeout seconds.

erase_bonding()→ None
Erase all bonding information stored in flash memory.

class _bleio.Address(address: circuitpython_typing.ReadableBuffer, address_type: int)
Encapsulates the address of a BLE device.

Create a new Address object encapsulating the address value. The value itself can be one of:

Parameters

• address (ReadableBuffer) – The address value to encapsulate. A buffer object (bytearray,
bytes) of 6 bytes.

1.8. Full Table of Contents 61

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• address_type (int) – one of the integer values: PUBLIC, RANDOM_STATIC,
RANDOM_PRIVATE_RESOLVABLE, or RANDOM_PRIVATE_NON_RESOLVABLE.

address_bytes :bytes

The bytes that make up the device address (read-only).

Note that the bytes object returned is in little-endian order: The least significant byte is
address_bytes[0]. So the address will appear to be reversed if you print the raw bytes object. If
you print or use str() on the Attribute object itself, the address will be printed in the expected order.
For example:

>>> import _bleio
>>> _bleio.adapter.address
<Address c8:1d:f5:ed:a8:35>
>>> _bleio.adapter.address.address_bytes
b'5\xa8\xed\xf5\x1d\xc8'

type :int

The address type (read-only).

One of the integer values: PUBLIC, RANDOM_STATIC, RANDOM_PRIVATE_RESOLVABLE, or
RANDOM_PRIVATE_NON_RESOLVABLE.

PUBLIC :int

A publicly known address, with a company ID (high 24 bits)and company-assigned part (low 24 bits).

RANDOM_STATIC :int

A randomly generated address that does not change often. It may never change or may change after a power
cycle.

RANDOM_PRIVATE_RESOLVABLE :int

An address that is usable when the peer knows the other device’s secret Identity Resolving Key (IRK).

RANDOM_PRIVATE_NON_RESOLVABLE :int

A randomly generated address that changes on every connection.

__eq__(other: object)→ bool
Two Address objects are equal if their addresses and address types are equal.

__hash__()→ int
Returns a hash for the Address data.

class _bleio.Attribute

Definitions associated with all BLE attributes: characteristics, descriptors, etc.

Attribute is, notionally, a superclass of Characteristic and Descriptor, but is not defined as a Python
superclass of those classes.

You cannot create an instance of Attribute.

NO_ACCESS :int

security mode: access not allowed

OPEN :int

security_mode: no security (link is not encrypted)

ENCRYPT_NO_MITM :int

security_mode: unauthenticated encryption, without man-in-the-middle protection

62 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

ENCRYPT_WITH_MITM :int

security_mode: authenticated encryption, with man-in-the-middle protection

LESC_ENCRYPT_WITH_MITM :int

security_mode: LESC encryption, with man-in-the-middle protection

SIGNED_NO_MITM :int

security_mode: unauthenticated data signing, without man-in-the-middle protection

SIGNED_WITH_MITM :int

security_mode: authenticated data signing, without man-in-the-middle protection

class _bleio.Characteristic

Stores information about a BLE service characteristic and allows reading and writing of the characteristic’s value.

There is no regular constructor for a Characteristic. A new local Characteristic can be created and attached
to a Service by calling add_to_service(). Remote Characteristic objects are created by Connection.
discover_remote_services() as part of remote Services.

properties :int

An int bitmask representing which properties are set, specified as bitwise or’ing of of these possible values.
BROADCAST, INDICATE, NOTIFY , READ, WRITE, WRITE_NO_RESPONSE.

uuid :Optional[UUID]

The UUID of this characteristic. (read-only)

Will be None if the 128-bit UUID for this characteristic is not known.

value :bytearray

The value of this characteristic.

max_length :int

The max length of this characteristic.

descriptors :Descriptor

A tuple of Descriptor objects related to this characteristic. (read-only)

service :Service

The Service this Characteristic is a part of.

BROADCAST :int

property: allowed in advertising packets

INDICATE :int

property: server will indicate to the client when the value is set and wait for a response

NOTIFY :int

property: server will notify the client when the value is set

READ :int

property: clients may read this characteristic

WRITE :int

property: clients may write this characteristic; a response will be sent back

WRITE_NO_RESPONSE :int

property: clients may write this characteristic; no response will be sent back

1.8. Full Table of Contents 63

CircuitPython Documentation, Release 7.3.3

add_to_service(service: Service, uuid: UUID, *, properties: int = 0, read_perm: int = Attribute.OPEN,
write_perm: int = Attribute.OPEN, max_length: int = 20, fixed_length: bool = False,
initial_value: Optional[circuitpython_typing.ReadableBuffer] = None, user_description:
Optional[str] = None)→ Characteristic

Create a new Characteristic object, and add it to this Service.

Parameters

• service (Service) – The service that will provide this characteristic

• uuid (UUID) – The uuid of the characteristic

• properties (int) – The properties of the characteristic, specified as a bitmask of
these values bitwise-or’d together: BROADCAST, INDICATE, NOTIFY , READ, WRITE,
WRITE_NO_RESPONSE.

• read_perm (int) – Specifies whether the characteristic can be read by a client, and if so,
which security mode is required. Must be one of the integer values Attribute.
NO_ACCESS, Attribute.OPEN, Attribute.ENCRYPT_NO_MITM , Attribute.
ENCRYPT_WITH_MITM , Attribute.LESC_ENCRYPT_WITH_MITM , Attribute.
SIGNED_NO_MITM , or Attribute.SIGNED_WITH_MITM .

• write_perm (int) – Specifies whether the characteristic can be written by a client, and if
so, which security mode is required. Values allowed are the same as read_perm.

• max_length (int) – Maximum length in bytes of the characteristic value. The maximum
allowed is is 512, or possibly 510 if fixed_length is False. The default, 20, is the maxi-
mum number of data bytes that fit in a single BLE 4.x ATT packet.

• fixed_length (bool) – True if the characteristic value is of fixed length.

• initial_value (ReadableBuffer) – The initial value for this characteristic. If not
given, will be filled with zeros.

• user_description (str) – User friendly description of the characteristic

Returns
the new Characteristic.

set_cccd(*, notify: bool = False, indicate: bool = False)→ None
Set the remote characteristic’s CCCD to enable or disable notification and indication.

Parameters

• notify (bool) – True if Characteristic should receive notifications of remote writes

• indicate (float) – True if Characteristic should receive indications of remote writes

class _bleio.CharacteristicBuffer(characteristic: Characteristic, *, timeout: int = 1, buffer_size: int = 64)
Accumulates a Characteristic’s incoming values in a FIFO buffer.

Monitor the given Characteristic. Each time a new value is written to the Characteristic add the newly-written
bytes to a FIFO buffer.

Parameters

• characteristic (Characteristic) – The Characteristic to monitor. It may be a local
Characteristic provided by a Peripheral Service, or a remote Characteristic in a remote Ser-
vice that a Central has connected to.

• timeout (int) – the timeout in seconds to wait for the first character and between subsequent
characters.

64 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• buffer_size (int) – Size of ring buffer that stores incoming data coming from client. Must
be >= 1.

in_waiting :int

The number of bytes in the input buffer, available to be read

read(nbytes: Optional[int] = None)→ Optional[bytes]
Read characters. If nbytes is specified then read at most that many bytes. Otherwise, read everything
that arrives until the connection times out. Providing the number of bytes expected is highly recommended
because it will be faster.

Returns
Data read

Return type
bytes or None

readinto(buf: circuitpython_typing.WriteableBuffer)→ Optional[int]
Read bytes into the buf. Read at most len(buf) bytes.

Returns
number of bytes read and stored into buf

Return type
int or None (on a non-blocking error)

readline()→ bytes
Read a line, ending in a newline character.

Returns
the line read

Return type
int or None

reset_input_buffer()→ None
Discard any unread characters in the input buffer.

deinit()→ None
Disable permanently.

class _bleio.Connection

A BLE connection to another device. Used to discover and interact with services on the other device.

Usage:

import _bleio

my_entry = None
for entry in _bleio.adapter.scan(2.5):

if entry.name is not None and entry.name == 'InterestingPeripheral':
my_entry = entry
break

if not my_entry:
raise Exception("'InterestingPeripheral' not found")

connection = _bleio.adapter.connect(my_entry.address, timeout=10)

1.8. Full Table of Contents 65

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Connections cannot be made directly. Instead, to initiate a connection use Adapter.connect. Connections
may also be made when another device initiates a connection. To use a Connection created by a peer, read the
Adapter.connections property.

connected :bool

True if connected to the remote peer.

paired :bool

True if paired to the remote peer.

connection_interval :float

Time between transmissions in milliseconds. Will be multiple of 1.25ms. Lower numbers increase speed
and decrease latency but increase power consumption.

When setting connection_interval, the peer may reject the new interval and connection_interval will
then remain the same.

Apple has additional guidelines that dictate should be a multiple of 15ms except if HID is available. When
HID is available Apple devices may accept 11.25ms intervals.

max_packet_length :int

The maximum number of data bytes that can be sent in a single transmission, not including overhead bytes.

This is the maximum number of bytes that can be sent in a notification, which must be sent in a single
packet. But for a regular characteristic read or write, may be sent in multiple packets, so this limit does not
apply.

disconnect()→ None
Disconnects from the remote peripheral. Does nothing if already disconnected.

pair(*, bond: bool = True)→ None
Pair to the peer to improve security.

discover_remote_services(service_uuids_whitelist: Optional[Iterable[UUID]] = None)→
Tuple[Service, Ellipsis]

Do BLE discovery for all services or for the given service UUIDS, to find their handles and characteristics,
and return the discovered services. Connection.connected must be True.

Parameters
service_uuids_whitelist (iterable) – an iterable of UUID objects for the services pro-
vided by the peripheral that you want to use.

The peripheral may provide more services, but services not listed are ignored and will not be
returned.

If service_uuids_whitelist is None, then all services will undergo discovery, which can be
slow.

If the service UUID is 128-bit, or its characteristic UUID’s are 128-bit, you you must have
already created a UUID object for that UUID in order for the service or characteristic to be
discovered. Creating the UUID causes the UUID to be registered for use. (This restriction
may be lifted in the future.)

Returns
A tuple of _bleio.Service objects provided by the remote peripheral.

class _bleio.Descriptor

Stores information about a BLE descriptor.

Descriptors are attached to BLE characteristics and provide contextual information about the characteristic.

66 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

There is no regular constructor for a Descriptor. A new local Descriptor can be created and attached to a Char-
acteristic by calling add_to_characteristic(). Remote Descriptor objects are created by Connection.
discover_remote_services() as part of remote Characteristics in the remote Services that are discovered.

uuid :UUID

The descriptor uuid. (read-only)

characteristic :Characteristic

The Characteristic this Descriptor is a part of.

value :bytearray

The value of this descriptor.

classmethod add_to_characteristic(characteristic: Characteristic, uuid: UUID, *, read_perm: int =
Attribute.OPEN, write_perm: int = Attribute.OPEN, max_length:
int = 20, fixed_length: bool = False, initial_value:
circuitpython_typing.ReadableBuffer = b'')→ Descriptor

Create a new Descriptor object, and add it to this Service.

Parameters

• characteristic (Characteristic) – The characteristic that will hold this descriptor

• uuid (UUID) – The uuid of the descriptor

• read_perm (int) – Specifies whether the descriptor can be read by a client, and if so,
which security mode is required. Must be one of the integer values Attribute.
NO_ACCESS, Attribute.OPEN, Attribute.ENCRYPT_NO_MITM , Attribute.
ENCRYPT_WITH_MITM , Attribute.LESC_ENCRYPT_WITH_MITM , Attribute.
SIGNED_NO_MITM , or Attribute.SIGNED_WITH_MITM .

• write_perm (int) – Specifies whether the descriptor can be written by a client, and if so,
which security mode is required. Values allowed are the same as read_perm.

• max_length (int) – Maximum length in bytes of the descriptor value. The maximum al-
lowed is is 512, or possibly 510 if fixed_length is False. The default, 20, is the maximum
number of data bytes that fit in a single BLE 4.x ATT packet.

• fixed_length (bool) – True if the descriptor value is of fixed length.

• initial_value (ReadableBuffer) – The initial value for this descriptor.

Returns
the new Descriptor.

class _bleio.PacketBuffer(characteristic: Characteristic, *, buffer_size: int, max_packet_size: Optional[int]
= None)

Accumulates a Characteristic’s incoming packets in a FIFO buffer and facilitates packet aware outgoing
writes. A packet’s size is either the characteristic length or the maximum transmission unit (MTU) mi-
nus overhead, whichever is smaller. The MTU can change so check incoming_packet_length and
outgoing_packet_length before creating a buffer to store data.

When we’re the server, we ignore all connections besides the first to subscribe to notifications.

Monitor the given Characteristic. Each time a new value is written to the Characteristic add the newly-written
bytes to a FIFO buffer.

Monitor the given Characteristic. Each time a new value is written to the Characteristic add the newly-written
packet of bytes to a FIFO buffer.

Parameters

1.8. Full Table of Contents 67

CircuitPython Documentation, Release 7.3.3

• characteristic (Characteristic) – The Characteristic to monitor. It may be a local
Characteristic provided by a Peripheral Service, or a remote Characteristic in a remote Ser-
vice that a Central has connected to.

• buffer_size (int) – Size of ring buffer (in packets of the Characteristic’s maximum length)
that stores incoming packets coming from the peer.

• max_packet_size (int) – Maximum size of packets. Overrides value from the character-
istic. (Remote characteristics may not have the correct length.)

incoming_packet_length :int

Maximum length in bytes of a packet we are reading.

outgoing_packet_length :int

Maximum length in bytes of a packet we are writing.

readinto(buf: circuitpython_typing.WriteableBuffer)→ int
Reads a single BLE packet into the buf. Raises an exception if the next packet is longer than the given
buffer. Use incoming_packet_length to read the maximum length of a single packet.

Returns
number of bytes read and stored into buf

Return type
int

write(data: circuitpython_typing.ReadableBuffer, *, header: Optional[bytes] = None)→ int
Writes all bytes from data into the same outgoing packet. The bytes from header are included before data
when the pending packet is currently empty.

This does not block until the data is sent. It only blocks until the data is pending.

Returns
number of bytes written. May include header bytes when packet is empty.

Return type
int

deinit()→ None
Disable permanently.

class _bleio.ScanEntry

Encapsulates information about a device that was received during scanning. It can be advertisement or scan
response data. This object may only be created by a _bleio.ScanResults: it has no user-visible constructor.

Cannot be instantiated directly. Use _bleio.Adapter.start_scan.

address :Address

The address of the device (read-only), of type _bleio.Address.

advertisement_bytes :bytes

All the advertisement data present in the packet, returned as a bytes object. (read-only)

rssi :int

The signal strength of the device at the time of the scan, in integer dBm. (read-only)

connectable :bool

True if the device can be connected to. (read-only)

68 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

scan_response :bool

True if the entry was a scan response. (read-only)

matches(prefixes: ScanEntry, *, match_all: bool = True)→ bool
Returns True if the ScanEntry matches all prefixes when match_all is True. This is stricter than the scan
filtering which accepts any advertisements that match any of the prefixes where match_all is False.

all also works for match_all but will be removed in CircuitPython 8.

class _bleio.ScanResults

Iterates over advertising data received while scanning. This object is always created by a _bleio.Adapter: it
has no user-visible constructor.

Cannot be instantiated directly. Use _bleio.Adapter.start_scan.

__iter__()→ Iterator[ScanEntry]
Returns itself since it is the iterator.

__next__()→ ScanEntry
Returns the next _bleio.ScanEntry. Blocks if none have been received and scanning is still active.
Raises StopIteration if scanning is finished and no other results are available.

class _bleio.Service(uuid: UUID, *, secondary: bool = False)
Stores information about a BLE service and its characteristics.

Create a new Service identified by the specified UUID. It can be accessed by all connections. This is known as
a Service server. Client Service objects are created via Connection.discover_remote_services.

To mark the Service as secondary, pass True as secondary.

Parameters

• uuid (UUID) – The uuid of the service

• secondary (bool) – If the service is a secondary one

Returns
the new Service

characteristics :Tuple[Characteristic, Ellipsis]

A tuple of Characteristic designating the characteristics that are offered by this service. (read-only)

remote :bool

True if this is a service provided by a remote device. (read-only)

secondary :bool

True if this is a secondary service. (read-only)

uuid :Optional[UUID]

The UUID of this service. (read-only)

Will be None if the 128-bit UUID for this service is not known.

class _bleio.UUID(value: Union[int, circuitpython_typing.ReadableBuffer, str])
A 16-bit or 128-bit UUID. Can be used for services, characteristics, descriptors and more.

Create a new UUID or UUID object encapsulating the uuid value. The value can be one of:

• an int value in range 0 to 0xFFFF (Bluetooth SIG 16-bit UUID)

• a buffer object (bytearray, bytes) of 16 bytes in little-endian order (128-bit UUID)

• a string of hex digits of the form ‘xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’

1.8. Full Table of Contents 69

https://docs.python.org/3/library/constants.html#True

CircuitPython Documentation, Release 7.3.3

Creating a 128-bit UUID registers the UUID with the onboard BLE software, and provides a temporary 16-bit
UUID that can be used in place of the full 128-bit UUID.

Parameters
value (int, ReadableBuffer or str) – The uuid value to encapsulate

uuid16 :int

The 16-bit part of the UUID. (read-only)

Type
int

uuid128 :bytes

The 128-bit value of the UUID Raises AttributeError if this is a 16-bit UUID. (read-only)

Type
bytes

size :int

128 if this UUID represents a 128-bit vendor-specific UUID. 16 if this UUID represents a 16-bit Bluetooth
SIG assigned UUID. (read-only) 32-bit UUIDs are not currently supported.

Type
int

pack_into(buffer: circuitpython_typing.WriteableBuffer, offset: int = 0)→ None
Packs the UUID into the given buffer at the given offset.

__eq__(other: object)→ bool
Two UUID objects are equal if their values match and they are both 128-bit or both 16-bit.

_eve – Low-level BridgeTek EVE bindings

The _eve module provides a class _EVE which contains methods for constructing EVE command buffers and append-
ing basic graphics commands.

class _eve._EVE

register(o: object)→ None

flush()→ None
Send any queued drawing commands directly to the hardware.

Parameters
width (int) – The width of the grid in tiles, or 1 for sprites.

cc(b: circuitpython_typing.ReadableBuffer)→ None
Append bytes to the command FIFO.

Parameters
b (ReadableBuffer) – The bytes to add

AlphaFunc(func: int, ref: int)→ None
Set the alpha test function

Parameters

• func (int) – specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL,
EQUAL, NOTEQUAL, or ALWAYS. Range 0-7. The initial value is ALWAYS(7)

70 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• ref (int) – specifies the reference value for the alpha test. Range 0-255. The initial value
is 0

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Begin(prim: int)→ None
Begin drawing a graphics primitive

Parameters
prim (int) – graphics primitive.

Valid primitives are BITMAPS, POINTS, LINES, LINE_STRIP, EDGE_STRIP_R, EDGE_STRIP_L,
EDGE_STRIP_A, EDGE_STRIP_B and RECTS.

BitmapExtFormat(format: int)→ None
Set the bitmap format

Parameters
format (int) – bitmap pixel format.

BitmapHandle(handle: int)→ None
Set the bitmap handle

Parameters
handle (int) – bitmap handle. Range 0-31. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

BitmapLayoutH(linestride: int, height: int)→ None
Set the source bitmap memory format and layout for the current handle. high bits for large bitmaps

Parameters

• linestride (int) – high part of bitmap line stride, in bytes. Range 0-7

• height (int) – high part of bitmap height, in lines. Range 0-3

BitmapLayout(format: int, linestride: int, height: int)→ None
Set the source bitmap memory format and layout for the current handle

Parameters

• format (int) – bitmap pixel format, or GLFORMAT to use BITMAP_EXT_FORMAT
instead. Range 0-31

• linestride (int) – bitmap line stride, in bytes. Range 0-1023

• height (int) – bitmap height, in lines. Range 0-511

BitmapSizeH(width: int, height: int)→ None
Set the screen drawing of bitmaps for the current handle. high bits for large bitmaps

Parameters

• width (int) – high part of drawn bitmap width, in pixels. Range 0-3

• height (int) – high part of drawn bitmap height, in pixels. Range 0-3

BitmapSize(filter: int, wrapx: int, wrapy: int, width: int, height: int)→ None
Set the screen drawing of bitmaps for the current handle

Parameters

1.8. Full Table of Contents 71

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• filter (int) – bitmap filtering mode, one of NEAREST or BILINEAR. Range 0-1

• wrapx (int) – bitmap 𝑥 wrap mode, one of REPEAT or BORDER. Range 0-1

• wrapy (int) – bitmap 𝑦 wrap mode, one of REPEAT or BORDER. Range 0-1

• width (int) – drawn bitmap width, in pixels. Range 0-511

• height (int) – drawn bitmap height, in pixels. Range 0-511

BitmapSource(addr: int)→ None
Set the source address for bitmap graphics

Parameters
addr (int) – Bitmap start address, pixel-aligned. May be in SRAM or flash. Range 0-
16777215

BitmapSwizzle(r: int, g: int, b: int, a: int)→ None
Set the source for the r,g,b and a channels of a bitmap

Parameters

• r (int) – red component source channel. Range 0-7

• g (int) – green component source channel. Range 0-7

• b (int) – blue component source channel. Range 0-7

• a (int) – alpha component source channel. Range 0-7

BitmapTransformA(p: int, v: int)→ None
Set the 𝑎 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑎 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 256

The initial value is p = 0, v = 256. This represents the value 1.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformB(p: int, v: int)→ None
Set the 𝑏 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑏 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 0

The initial value is p = 0, v = 0. This represents the value 0.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformC(v: int)→ None
Set the 𝑐 component of the bitmap transform matrix

Parameters
v (int) – The 𝑐 component of the bitmap transform matrix, in signed 15.8 bit fixed-point
form. Range 0-16777215. The initial value is 0

72 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

BitmapTransformD(p: int, v: int)→ None
Set the 𝑑 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑑 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 0

The initial value is p = 0, v = 0. This represents the value 0.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformE(p: int, v: int)→ None
Set the 𝑒 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑒 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 256

The initial value is p = 0, v = 256. This represents the value 1.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformF(v: int)→ None
Set the 𝑓 component of the bitmap transform matrix

Parameters
v (int) – The 𝑓 component of the bitmap transform matrix, in signed 15.8 bit fixed-point
form. Range 0-16777215. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

BlendFunc(src: int, dst: int)→ None
Set pixel arithmetic

Parameters

• src (int) – specifies how the source blending factor is computed. One of ZERO, ONE,
SRC_ALPHA, DST_ALPHA, ONE_MINUS_SRC_ALPHA or ONE_MINUS_DST_ALPHA. Range 0-
7. The initial value is SRC_ALPHA(2)

• dst (int) – specifies how the destination blending factor is computed, one of the same
constants as src. Range 0-7. The initial value is ONE_MINUS_SRC_ALPHA(4)

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Call(dest: int)→ None
Execute a sequence of commands at another location in the display list

Parameters
dest (int) – display list address. Range 0-65535

1.8. Full Table of Contents 73

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Cell(cell: int)→ None
Set the bitmap cell number for the vertex2f command

Parameters
cell (int) – bitmap cell number. Range 0-127. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ClearColorA(alpha: int)→ None
Set clear value for the alpha channel

Parameters
alpha (int) – alpha value used when the color buffer is cleared. Range 0-255. The initial
value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ClearColorRGB(red: int, green: int, blue: int)→ None
Set clear values for red, green and blue channels

Parameters

• red (int) – red value used when the color buffer is cleared. Range 0-255. The initial value
is 0

• green (int) – green value used when the color buffer is cleared. Range 0-255. The initial
value is 0

• blue (int) – blue value used when the color buffer is cleared. Range 0-255. The initial
value is 0

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Clear(c: int, s: int, t: int)→ None
Clear buffers to preset values

Parameters

• c (int) – clear color buffer. Range 0-1

• s (int) – clear stencil buffer. Range 0-1

• t (int) – clear tag buffer. Range 0-1

ClearStencil(s: int)→ None
Set clear value for the stencil buffer

Parameters
s (int) – value used when the stencil buffer is cleared. Range 0-255. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ClearTag(s: int)→ None
Set clear value for the tag buffer

Parameters
s (int) – value used when the tag buffer is cleared. Range 0-255. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

74 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

ColorA(alpha: int)→ None
Set the current color alpha

Parameters
alpha (int) – alpha for the current color. Range 0-255. The initial value is 255

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ColorMask(r: int, g: int, b: int, a: int)→ None
Enable and disable writing of frame buffer color components

Parameters

• r (int) – allow updates to the frame buffer red component. Range 0-1. The initial value
is 1

• g (int) – allow updates to the frame buffer green component. Range 0-1. The initial value
is 1

• b (int) – allow updates to the frame buffer blue component. Range 0-1. The initial value
is 1

• a (int) – allow updates to the frame buffer alpha component. Range 0-1. The initial value
is 1

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

ColorRGB(red: int, green: int, blue: int)→ None
Set the drawing color

Parameters

• red (int) – red value for the current color. Range 0-255. The initial value is 255

• green (int) – green for the current color. Range 0-255. The initial value is 255

• blue (int) – blue for the current color. Range 0-255. The initial value is 255

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Display()→ None
End the display list

End()→ None
End drawing a graphics primitive

Vertex2ii() and Vertex2f() calls are ignored until the next Begin().

Jump(dest: int)→ None
Execute commands at another location in the display list

Parameters
dest (int) – display list address. Range 0-65535

Macro(m: int)→ None
Execute a single command from a macro register

Parameters
m (int) – macro register to read. Range 0-1

1.8. Full Table of Contents 75

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Nop()→ None
No operation

PaletteSource(addr: int)→ None
Set the base address of the palette

Parameters
addr (int) – Address in graphics SRAM, 2-byte aligned. Range 0-4194303. The initial
value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

RestoreContext()→ None
Restore the current graphics context from the context stack

Return()→ None
Return from a previous call command

SaveContext()→ None
Push the current graphics context on the context stack

ScissorSize(width: int, height: int)→ None
Set the size of the scissor clip rectangle

Parameters

• width (int) – The width of the scissor clip rectangle, in pixels. Range 0-4095. The initial
value is hsize

• height (int) – The height of the scissor clip rectangle, in pixels. Range 0-4095. The
initial value is 2048

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

ScissorXY(x: int, y: int)→ None
Set the top left corner of the scissor clip rectangle

Parameters

• x (int) – The 𝑥 coordinate of the scissor clip rectangle, in pixels. Range 0-2047. The
initial value is 0

• y (int) – The 𝑦 coordinate of the scissor clip rectangle, in pixels. Range 0-2047. The
initial value is 0

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

StencilFunc(func: int, ref: int, mask: int)→ None
Set function and reference value for stencil testing

Parameters

• func (int) – specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL,
EQUAL, NOTEQUAL, or ALWAYS. Range 0-7. The initial value is ALWAYS(7)

• ref (int) – specifies the reference value for the stencil test. Range 0-255. The initial value
is 0

• mask (int) – specifies a mask that is ANDed with the reference value and the stored stencil
value. Range 0-255. The initial value is 255

76 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

StencilMask(mask: int)→ None
Control the writing of individual bits in the stencil planes

Parameters
mask (int) – the mask used to enable writing stencil bits. Range 0-255. The initial value is
255

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

StencilOp(sfail: int, spass: int)→ None
Set stencil test actions

Parameters

• sfail (int) – specifies the action to take when the stencil test fails, one of KEEP, ZERO,
REPLACE, INCR, INCR_WRAP, DECR, DECR_WRAP, and INVERT. Range 0-7. The initial value
is KEEP(1)

• spass (int) – specifies the action to take when the stencil test passes, one of the same
constants as sfail. Range 0-7. The initial value is KEEP(1)

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

TagMask(mask: int)→ None
Control the writing of the tag buffer

Parameters
mask (int) – allow updates to the tag buffer. Range 0-1. The initial value is 1

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

Tag(s: int)→ None
Set the current tag value

Parameters
s (int) – tag value. Range 0-255. The initial value is 255

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

Vertex2ii(x: int, y: int, handle: int, cell: int)→ None

Parameters

• x (int) – x-coordinate in pixels. Range 0-511

• y (int) – y-coordinate in pixels. Range 0-511

• handle (int) – bitmap handle. Range 0-31

• cell (int) – cell number. Range 0-127

This method is an alternative to Vertex2f().

Vertex2f(b: float)→ None
Draw a point.

Parameters

1.8. Full Table of Contents 77

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• x (float) – pixel x-coordinate

• y (float) – pixel y-coordinate

LineWidth(width: float)→ None
Set the width of rasterized lines

Parameters
width (float) – line width in pixels. Range 0-511. The initial value is 1

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

PointSize(size: float)→ None
Set the diameter of rasterized points

Parameters
size (float) – point diameter in pixels. Range 0-1023. The initial value is 1

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

VertexTranslateX(x: float)→ None
Set the vertex transformation’s x translation component

Parameters
x (float) – signed x-coordinate in pixels. Range ±4095. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

VertexTranslateY(y: float)→ None
Set the vertex transformation’s y translation component

Parameters
y (float) – signed y-coordinate in pixels. Range ±4095. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

VertexFormat(frac: int)→ None
Set the precision of vertex2f coordinates

Parameters
frac (int) – Number of fractional bits in X,Y coordinates, 0-4. Range 0-7. The initial value
is 4

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

cmd0(n: int)→ None
Append the command word n to the FIFO

Parameters
n (int) – The command code

This method is used by the eve module to efficiently add commands to the FIFO.

cmd(n: int, fmt: str, args: Tuple[str, Ellipsis])→ None
Append a command packet to the FIFO.

Parameters

78 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• n (int) – The command code

• fmt (str) – The command format struct layout

• args (tuple(str, ...)) – The command’s arguments

Supported format codes: h, H, i, I.

This method is used by the eve module to efficiently add commands to the FIFO.

_pew – LED matrix driver

class _pew.PewPew(buffer: circuitpython_typing.ReadableBuffer, rows: List[digitalio.DigitalInOut], cols:
List[digitalio.DigitalInOut], buttons: digitalio.DigitalInOut)

This is an internal module to be used by the pew.py library from https://github.com/pewpew-game/
pew-pewpew-standalone-10.x to handle the LED matrix display and buttons on the pewpew10 board.

Usage:

This singleton class is instantiated by the ``pew`` library, and
used internally by it. All user-visible interactions are done through
that library.

Initializes matrix scanning routines.

The buffer is a 64 byte long bytearray that stores what should be displayed on the matrix. rows and cols are
both lists of eight DigitalInputOutput objects that are connected to the matrix rows and columns. buttons
is a DigitalInputOutput object that is connected to the common side of all buttons (the other sides of the
buttons are connected to rows of the matrix).

_stage – C-level helpers for animation of sprites on a stage

The _stage module contains native code to speed-up the `stage Library <https://github.com/python-ugame/
circuitpython-stage>`_.

_stage.render(x0: int, y0: int, x1: int, y1: int, layers: List[Layer], buffer: circuitpython_typing.WriteableBuffer,
display: displayio.Display, scale: int, background: int)→ None

Render and send to the display a fragment of the screen.

Parameters

• x0 (int) – Left edge of the fragment.

• y0 (int) – Top edge of the fragment.

• x1 (int) – Right edge of the fragment.

• y1 (int) – Bottom edge of the fragment.

• layers (list[Layer]) – A list of the Layer objects.

• buffer (WriteableBuffer) – A buffer to use for rendering.

• display (Display) – The display to use.

• scale (int) – How many times should the image be scaled up.

• background (int) – What color to display when nothing is there.

1.8. Full Table of Contents 79

https://github.com/pewpew-game/pew-pewpew-standalone-10.x
https://github.com/pewpew-game/pew-pewpew-standalone-10.x
https://github.com/python-ugame/circuitpython-stage
https://github.com/python-ugame/circuitpython-stage
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

There are also no sanity checks, outside of the basic overflow checking. The caller is responsible for making the
passed parameters valid.

This function is intended for internal use in the stage library and all the necessary checks are performed there.

class _stage.Layer(width: int, height: int, graphic: circuitpython_typing.ReadableBuffer, palette:
circuitpython_typing.ReadableBuffer, grid: circuitpython_typing.ReadableBuffer)

Keep information about a single layer of graphics

Keep internal information about a layer of graphics (either a Grid or a Sprite) in a format suitable for fast
rendering with the render() function.

Parameters

• width (int) – The width of the grid in tiles, or 1 for sprites.

• height (int) – The height of the grid in tiles, or 1 for sprites.

• graphic (ReadableBuffer) – The graphic data of the tiles.

• palette (ReadableBuffer) – The color palette to be used.

• grid (ReadableBuffer) – The contents of the grid map.

This class is intended for internal use in the stage library and it shouldn’t be used on its own.

move(x: int, y: int)→ None
Set the offset of the layer to the specified values.

frame(frame: int, rotation: int)→ None
Set the animation frame of the sprite, and optionally rotation its graphic.

class _stage.Text(width: int, height: int, font: circuitpython_typing.ReadableBuffer, palette:
circuitpython_typing.ReadableBuffer, chars: circuitpython_typing.ReadableBuffer)

Keep information about a single grid of text

Keep internal information about a grid of text in a format suitable for fast rendering with the render() function.

Parameters

• width (int) – The width of the grid in tiles, or 1 for sprites.

• height (int) – The height of the grid in tiles, or 1 for sprites.

• font (ReadableBuffer) – The font data of the characters.

• palette (ReadableBuffer) – The color palette to be used.

• chars (ReadableBuffer) – The contents of the character grid.

This class is intended for internal use in the stage library and it shouldn’t be used on its own.

move(x: int, y: int)→ None
Set the offset of the text to the specified values.

80 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

adafruit_bus_device – Hardware accelerated external bus access

The I2CDevice and SPIDevice helper classes make managing transaction state on a bus easy. For example, they manage
locking the bus to prevent other concurrent access. For SPI devices, it manages the chip select and protocol changes
such as mode. For I2C, it manages the device address.

adafruit_bus_device.i2c_device – I2C Device Manager

class adafruit_bus_device.i2c_device.I2CDevice(i2c: busio.I2C, device_address: int, probe: bool =
True)

Represents a single I2C device and manages locking the bus and the device address.

Parameters

• i2c (I2C) – The I2C bus the device is on

• device_address (int) – The 7 bit device address

• probe (bool) – Probe for the device upon object creation, default is true

Example:

import busio
from board import *
from adafruit_bus_device.i2c_device import I2CDevice
with busio.I2C(SCL, SDA) as i2c:

device = I2CDevice(i2c, 0x70)
bytes_read = bytearray(4)
with device:

device.readinto(bytes_read)
A second transaction
with device:

device.write(bytes_read)

__enter__()→ I2CDevice
Context manager entry to lock bus.

__exit__()→ None
Automatically unlocks the bus on exit.

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize)→ None
Read into buffer from the device.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed. The
number of bytes read will be the length of buffer[start:end].

Parameters

• buffer (WriteableBuffer) – read bytes into this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

write(buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)→ None
Write the bytes from buffer to the device, then transmit a stop bit.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

1.8. Full Table of Contents 81

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Parameters

• buffer (ReadableBuffer) – write out bytes from this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

write_then_readinto(out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int =
sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize)→ None

Write the bytes from out_buffer to the device, then immediately reads into in_buffer from the device.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[out_start:out_end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

Parameters

• out_buffer (ReadableBuffer) – write out bytes from this buffer

• in_buffer (WriteableBuffer) – read bytes into this buffer

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

adafruit_bus_device.spi_device – SPI Device Manager

class adafruit_bus_device.spi_device.SPIDevice(spi: busio.SPI, chip_select: microcontroller.Pin, *,
baudrate: int = 100000, polarity: int = 0, phase: int =
0, extra_clocks: int = 0)

Represents a single SPI device and manages locking the bus and the device address.

Parameters

• spi (SPI) – The SPI bus the device is on

• chip_select (DigitalInOut) – The chip select pin object that implements the DigitalI-
nOut API.

• cs_active_value (bool) – Set to true if your device requires CS to be active high. Defaults
to false.

• extra_clocks (int) – The minimum number of clock cycles to cycle the bus after CS is
high. (Used for SD cards.)

Example:

import busio
import digitalio
from board import *
from adafruit_bus_device.spi_device import SPIDevice

(continues on next page)

82 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

with busio.SPI(SCK, MOSI, MISO) as spi_bus:
cs = digitalio.DigitalInOut(D10)
device = SPIDevice(spi_bus, cs)
bytes_read = bytearray(4)
The object assigned to spi in the with statements below
is the original spi_bus object. We are using the busio.SPI
operations busio.SPI.readinto() and busio.SPI.write().
with device as spi:

spi.readinto(bytes_read)
A second transaction
with device as spi:

spi.write(bytes_read)

__enter__()→ busio.SPI
Starts a SPI transaction by configuring the SPI and asserting chip select.

__exit__()→ None
Ends a SPI transaction by deasserting chip select. See Lifetime and ContextManagers for more info.

adafruit_pixelbuf – A fast RGB(W) pixel buffer library for like NeoPixel and DotStar

The adafruit_pixelbuf module provides the PixelBuf class to accelerate RGB(W) strip/matrix manipulation,
such as DotStar and Neopixel.

Also available as _pixelbuf. This usage has been deprecated.

Byteorders are configured with strings, such as “RGB” or “RGBD”.

class adafruit_pixelbuf.PixelBuf(size: int, *, byteorder: str = 'BGR', brightness: float = 0, auto_write:
bool = False, header: circuitpython_typing.ReadableBuffer = b'', trailer:
circuitpython_typing.ReadableBuffer = b'')

A fast RGB[W] pixel buffer for LED and similar devices.

Create a PixelBuf object of the specified size, byteorder, and bits per pixel.

When brightness is less than 1.0, a second buffer will be used to store the color values before they are adjusted
for brightness.

When P (PWM duration) is present as the 4th character of the byteorder string, the 4th value in the tuple/list for
a pixel is the individual pixel brightness (0.0-1.0) and will enable a Dotstar compatible 1st byte for each pixel.

Parameters

• size (int) – Number of pixels

• byteorder (str) – Byte order string (such as “RGB”, “RGBW” or “PBGR”)

• brightness (float) – Brightness (0 to 1.0, default 1.0)

• auto_write (bool) – Whether to automatically write pixels (Default False)

• header (ReadableBuffer) – Sequence of bytes to always send before pixel values.

• trailer (ReadableBuffer) – Sequence of bytes to always send after pixel values.

bpp :int

The number of bytes per pixel in the buffer (read-only)

1.8. Full Table of Contents 83

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

brightness :float

Float value between 0 and 1. Output brightness.

When brightness is less than 1.0, a second buffer will be used to store the color values before they are
adjusted for brightness.

auto_write :bool

Whether to automatically write the pixels after each update.

byteorder :str

byteorder string for the buffer (read-only)

show()→ None
Transmits the color data to the pixels so that they are shown. This is done automatically when auto_write
is True.

fill(color: Union[int, Tuple[int, int, int], Tuple[int, int, int, float]])→ None
Fills the given pixelbuf with the given color.

__getitem__(index: slice)→ Union[Tuple[Tuple[int, int, int], Ellipsis], Tuple[Tuple[int, int, int, float],
Ellipsis]]

__getitem__(index: int)→ Union[Tuple[int, int, int], Tuple[int, int, int, float]]
Returns the pixel value at the given index as a tuple of (Red, Green, Blue[, White]) values between 0 and
255. When in PWM (DotStar) mode, the 4th tuple value is a float of the pixel intensity from 0-1.0.

__setitem__(index: slice, value: Tuple[Union[int, Tuple[float, Ellipsis], List[float]], Ellipsis])→ None
__setitem__(index: slice, value: List[Union[int, Tuple[float, Ellipsis], List[float]]])→ None
__setitem__(index: int, value: Union[int, Tuple[float, Ellipsis], List[float]])→ None

Sets the pixel value at the given index. Value can either be a tuple or integer. Tuples are The individual
(Red, Green, Blue[, White]) values between 0 and 255. If given an integer, the red, green and blue values
are packed into the lower three bytes (0xRRGGBB). For RGBW byteorders, if given only RGB values either
as an int or as a tuple, the white value is used instead when the red, green, and blue values are the same.

aesio – AES encryption routines

The AES module contains classes used to implement encryption and decryption. It aims to be low overhead in terms
of memory.

aesio.MODE_ECB :int

aesio.MODE_CBC :int

aesio.MODE_CTR :int

class aesio.AES(key: circuitpython_typing.ReadableBuffer, mode: int = 0, iv:
Optional[circuitpython_typing.ReadableBuffer] = None, segment_size: int = 8)

Encrypt and decrypt AES streams

Create a new AES state with the given key.

Parameters

• key (ReadableBuffer) – A 16-, 24-, or 32-byte key

• mode (int) – AES mode to use. One of: MODE_ECB, MODE_CBC, or MODE_CTR

• iv (ReadableBuffer) – Initialization vector to use for CBC or CTR mode

84 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Additional arguments are supported for legacy reasons.

Encrypting a string:

import aesio
from binascii import hexlify

key = b'Sixteen byte key'
inp = b'CircuitPython!!!' # Note: 16-bytes long
outp = bytearray(len(inp))
cipher = aesio.AES(key, aesio.MODE_ECB)
cipher.encrypt_into(inp, outp)
hexlify(outp)

encrypt_into(src: circuitpython_typing.ReadableBuffer, dest: circuitpython_typing.WriteableBuffer)→
None

Encrypt the buffer from src into dest.

For ECB mode, the buffers must be 16 bytes long. For CBC mode, the buffers must be a multiple of 16
bytes, and must be equal length. For CTX mode, there are no restrictions.

decrypt_into(src: circuitpython_typing.ReadableBuffer, dest: circuitpython_typing.WriteableBuffer)→
None

Decrypt the buffer from src into dest. For ECB mode, the buffers must be 16 bytes long. For CBC
mode, the buffers must be a multiple of 16 bytes, and must be equal length. For CTX mode, there are no
restrictions.

alarm – Alarms and sleep

Provides alarms that trigger based on time intervals or on external events, such as pin changes. The program can simply
wait for these alarms, or go to sleep and be awoken when they trigger.

There are two supported levels of sleep: light sleep and deep sleep.

Light sleep keeps sufficient state so the program can resume after sleeping. It does not shut down WiFi, BLE, or other
communications, or ongoing activities such as audio playback. It reduces power consumption to the extent possible
that leaves these continuing activities running. In some cases there may be no decrease in power consumption.

Deep sleep shuts down power to nearly all of the microcontroller including the CPU and RAM. This can save a more
significant amount of power, but CircuitPython must restart code.py from the beginning when awakened.

For both light sleep and deep sleep, if CircuitPython is connected to a host computer, maintaining the connection takes
priority and power consumption may not be reduced.

For more information about working with alarms and light/deep sleep in CircuitPython, see this Learn guide.

alarm.pin – Trigger an alarm when a pin changes state.

class alarm.pin.PinAlarm(pin: microcontroller.Pin, value: bool, edge: bool = False, pull: bool = False)
Create an alarm triggered by a microcontroller.Pin level. The alarm is not active until it
is passed to an alarm-enabling function, such as alarm.light_sleep_until_alarms() or alarm.
exit_and_deep_sleep_until_alarms().

Parameters

1.8. Full Table of Contents 85

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/deep-sleep-with-circuitpython

CircuitPython Documentation, Release 7.3.3

• pin (microcontroller.Pin) – The pin to monitor. On some ports, the choice of pin may
be limited due to hardware restrictions, particularly for deep-sleep alarms.

• value (bool) – When active, trigger when the pin value is high (True) or low (False). On
some ports, multiple PinAlarm objects may need to have coordinated values for deep-sleep
alarms.

• edge (bool) – If True, trigger only when there is a transition to the specified value of value.
If True, if the alarm becomes active when the pin value already matches value, the alarm
is not triggered: the pin must transition from not value to value to trigger the alarm. On
some ports, edge-triggering may not be available, particularly for deep-sleep alarms.

• pull (bool) – Enable a pull-up or pull-down which pulls the pin to the level opposite that of
value. For instance, if value is set to True, setting pull to True will enable a pull-down,
to hold the pin low normally until an outside signal pulls it high.

pin :microcontroller.Pin

The trigger pin.

value :bool

The value on which to trigger.

alarm.time – Trigger an alarm when the specified time is reached.

class alarm.time.TimeAlarm(monotonic_time: Optional[float] = None, epoch_time: Optional[int] = None)
Create an alarm that will be triggered when time.monotonic()would equal monotonic_time, or when time.
time() would equal epoch_time. Only one of the two arguments can be given. The alarm is not active un-
til it is passed to an alarm-enabling function, such as alarm.light_sleep_until_alarms() or alarm.
exit_and_deep_sleep_until_alarms().

If the given time is in the past when sleep occurs, the alarm will be triggered immediately.

monotonic_time :float

When this time is reached, the alarm will trigger, based on the time.monotonic() clock. The time may be
given as epoch_time in the constructor, but it is returned by this property only as a time.monotonic()
time.

alarm.touch – Trigger an alarm when touch is detected.

class alarm.touch.TouchAlarm(*pin: microcontroller.Pin)
Create an alarm that will be triggered when the given pin is touched. The alarm is not active until
it is passed to an alarm-enabling function, such as alarm.light_sleep_until_alarms() or alarm.
exit_and_deep_sleep_until_alarms().

Parameters
pin (microcontroller.Pin) – The pin to monitor. On some ports, the choice of pin may be
limited due to hardware restrictions, particularly for deep-sleep alarms.

pin :microcontroller.Pin

The trigger pin.

alarm.sleep_memory :SleepMemory

Memory that persists during deep sleep. This object is the sole instance of alarm.SleepMemory.

86 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

alarm.wake_alarm :Optional[circuitpython_typing.Alarm]

The most recently triggered alarm. If CircuitPython was sleeping, the alarm that woke it from sleep. If no alarm
occured since the last hard reset or soft restart, value is None.

alarm.light_sleep_until_alarms(*alarms: circuitpython_typing.Alarm)→ circuitpython_typing.Alarm
Go into a light sleep until awakened one of the alarms. The alarm causing the wake-up is returned, and is also
available as alarm.wake_alarm .

If no alarms are specified, return immediately.

If CircuitPython is connected to a host computer, the connection will be maintained, and the microcon-
troller may not actually go into a light sleep. This allows the user to interrupt an existing program with ctrl-C,
and to edit the files in CIRCUITPY, which would not be possible in true light sleep. Thus, to use light sleep and
save significant power, it may be necessary to disconnect from the host.

alarm.exit_and_deep_sleep_until_alarms(*alarms: circuitpython_typing.Alarm)→ None
Exit the program and go into a deep sleep, until awakened by one of the alarms. This function does not return.

When awakened, the microcontroller will restart and will run boot.py and code.py from the beginning.

After restart, an alarm equivalent to the one that caused the wake-up will be available as alarm.wake_alarm .
Its type and/or attributes may not correspond exactly to the original alarm. For time-base alarms, currently, an
alarm.time.TimeAlarm() is created.

If no alarms are specified, the microcontroller will deep sleep until reset.

If CircuitPython is connected to a host computer via USB or BLE the first time a deep sleep is requested,
the connection will be maintained and the system will not go into deep sleep. This allows the user to interrupt
an existing program with ctrl-C, and to edit the files in CIRCUITPY, which would not be possible in true deep
sleep.

If CircuitPython goes into a true deep sleep, and USB or BLE is reconnected, the next deep sleep will still be a
true deep sleep. You must do a hard reset or power-cycle to exit a true deep sleep loop.

Here is skeletal example that deep-sleeps and restarts every 60 seconds:

import alarm
import time

print("Waking up")

Set an alarm for 60 seconds from now.
time_alarm = alarm.time.TimeAlarm(monotonic_time=time.monotonic() + 60)

Deep sleep until the alarm goes off. Then restart the program.
alarm.exit_and_deep_sleep_until_alarms(time_alarm)

class alarm.SleepMemory

Store raw bytes in RAM that persists during deep sleep. The class acts as a bytearray. If power is lost, the
memory contents are lost.

Note that this class can’t be imported and used directly. The sole instance of SleepMemory is available at alarm.
sleep_memory.

Usage:

import alarm
alarm.sleep_memory[0] = True
alarm.sleep_memory[1] = 12

1.8. Full Table of Contents 87

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Not used. Access the sole instance through alarm.sleep_memory.

__bool__()→ bool
sleep_memory is True if its length is greater than zero. This is an easy way to check for its existence.

__len__()→ int
Return the length. This is used by (len)

__getitem__(index: slice)→ bytearray
__getitem__(index: int)→ int

Returns the value at the given index.

__setitem__(index: slice, value: circuitpython_typing.ReadableBuffer)→ None
__setitem__(index: int, value: int)→ None

Set the value at the given index.

analogio – Analog hardware support

The analogio module contains classes to provide access to analog IO typically implemented with digital-to-analog
(DAC) and analog-to-digital (ADC) converters.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import analogio
from board import *

pin = analogio.AnalogIn(A0)
print(pin.value)
pin.deinit()

This example will initialize the the device, read value and then deinit() the hardware. The last step is optional
because CircuitPython will do it automatically after the program finishes.

For the essentials of analogio, see the CircuitPython Essentials Learn guide

For more information on using analogio, see this additional Learn guide

class analogio.AnalogIn(pin: microcontroller.Pin)
Read analog voltage levels

Usage:

import analogio
from board import *

adc = analogio.AnalogIn(A1)
val = adc.value

Use the AnalogIn on the given pin. The reference voltage varies by platform so use reference_voltage to
read the configured setting.

Parameters
pin (Pin) – the pin to read from

88 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/circuitpython-essentials/circuitpython-analog-in
https://learn.adafruit.com/circuitpython-basics-analog-inputs-and-outputs

CircuitPython Documentation, Release 7.3.3

value :int

The value on the analog pin between 0 and 65535 inclusive (16-bit). (read-only)

Even if the underlying analog to digital converter (ADC) is lower resolution, the value is 16-bit.

reference_voltage :float

The maximum voltage measurable (also known as the reference voltage) as a float in Volts. Note the
ADC value may not scale to the actual voltage linearly at ends of the analog range.

deinit()→ None
Turn off the AnalogIn and release the pin for other use.

__enter__()→ AnalogIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

class analogio.AnalogOut(pin: microcontroller.Pin)
Output analog values (a specific voltage).

Example usage:

import analogio
from board import *

dac = analogio.AnalogOut(A2) # output on pin A2
dac.value = 32768 # makes A2 1.65V

Use the AnalogOut on the given pin.

Parameters
pin (Pin) – the pin to output to

value :int

The value on the analog pin between 0 and 65535 inclusive (16-bit). (write-only)

Even if the underlying digital to analog converter (DAC) is lower resolution, the value is 16-bit.

deinit()→ None
Turn off the AnalogOut and release the pin for other use.

__enter__()→ AnalogOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

1.8. Full Table of Contents 89

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

atexit – Atexit Module

This module defines functions to register and unregister cleanup functions. Functions thus registered are automatically
executed upon normal vm termination.

These functions are run in the reverse order in which they were registered; if you register A, B, and C, they will be run
in the order C, B, A.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: atexit.

atexit.register(func: Callable[Ellipsis, Any], *args: Optional[Any], **kwargs: Optional[Any])→
Callable[Ellipsis, Any]

Register func as a function to be executed at termination.

Any optional arguments that are to be passed to func must be passed as arguments to register(). It is possible
to register the same function and arguments more than once.

At normal program termination (for instance, if sys.exit() is called or the vm execution completes), all func-
tions registered are called in last in, first out order.

If an exception is raised during execution of the exit handler, a traceback is printed (unless SystemExit is raised)
and the execution stops.

This function returns func, which makes it possible to use it as a decorator.

atexit.unregister(func: Callable[Ellipsis, Any])→ None
Remove func from the list of functions to be run at termination.

unregister() silently does nothing if func was not previously registered. If func has been registered more than
once, every occurrence of that function in the atexit call stack will be removed.

audiobusio – Support for audio input and output over digital buses

The audiobusio module contains classes to provide access to audio IO over digital buses. These protocols are used to
communicate audio to other chips in the same circuit. It doesn’t include audio interconnect protocols such as S/PDIF.

All classes change hardware state and should be deinitialized when they are no longer needed. To do so, either call
deinit() or use a context manager.

class audiobusio.I2SOut(bit_clock: microcontroller.Pin, word_select: microcontroller.Pin, data:
microcontroller.Pin, *, left_justified: bool)

Output an I2S audio signal

Create a I2SOut object associated with the given pins.

Parameters

• bit_clock (Pin) – The bit clock (or serial clock) pin

• word_select (Pin) – The word select (or left/right clock) pin

• data (Pin) – The data pin

• left_justified (bool) – True when data bits are aligned with the word select clock. False
when they are shifted by one to match classic I2S protocol.

Simple 8ksps 440 Hz sine wave on Metro M0 Express using UDA1334 Breakout:

90 Chapter 1. CircuitPython

https://docs.python.org/3/library/atexit.html#module-atexit
https://docs.python.org/3/library/constants.html#None
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3678

CircuitPython Documentation, Release 7.3.3

import audiobusio
import audiocore
import board
import array
import time
import math

Generate one period of sine wave.
length = 8000 // 440
sine_wave = array.array("H", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)

sine_wave = audiocore.RawSample(sine_wave, sample_rate=8000)
i2s = audiobusio.I2SOut(board.D1, board.D0, board.D9)
i2s.play(sine_wave, loop=True)
time.sleep(1)
i2s.stop()

Playing a wave file from flash:

import board
import audiocore
import audiobusio
import digitalio

f = open("cplay-5.1-16bit-16khz.wav", "rb")
wav = audiocore.WaveFile(f)

a = audiobusio.I2SOut(board.D1, board.D0, board.D9)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

playing :bool

True when the audio sample is being output. (read-only)

paused :bool

True when playback is paused. (read-only)

deinit()→ None
Deinitialises the I2SOut and releases any hardware resources for reuse.

__enter__()→ I2SOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

1.8. Full Table of Contents 91

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample itself should consist of 8 bit or 16 bit samples.

stop()→ None
Stops playback.

pause()→ None
Stops playback temporarily while remembering the position. Use resume to resume playback.

resume()→ None
Resumes sample playback after pause().

class audiobusio.PDMIn(clock_pin: microcontroller.Pin, data_pin: microcontroller.Pin, *, sample_rate: int =
16000, bit_depth: int = 8, mono: bool = True, oversample: int = 64, startup_delay:
float = 0.11)

Record an input PDM audio stream

Create a PDMIn object associated with the given pins. This allows you to record audio signals from the given pins.
Individual ports may put further restrictions on the recording parameters. The overall sample rate is determined
by sample_rate x oversample, and the total must be 1MHz or higher, so sample_rate must be a minimum
of 16000.

Parameters

• clock_pin (Pin) – The pin to output the clock to

• data_pin (Pin) – The pin to read the data from

• sample_rate (int) – Target sample_rate of the resulting samples. Check sample_rate
for actual value. Minimum sample_rate is about 16000 Hz.

• bit_depth (int) – Final number of bits per sample. Must be divisible by 8

• mono (bool) – True when capturing a single channel of audio, captures two channels other-
wise

• oversample (int) – Number of single bit samples to decimate into a final sample. Must be
divisible by 8

• startup_delay (float) – seconds to wait after starting microphone clock to allow micro-
phone to turn on. Most require only 0.01s; some require 0.1s. Longer is safer. Must be in
range 0.0-1.0 seconds.

sample_rate :int

The actual sample_rate of the recording. This may not match the constructed sample rate due to internal
clock limitations.

deinit()→ None
Deinitialises the PDMIn and releases any hardware resources for reuse.

__enter__()→ PDMIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context.

92 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

record(destination: circuitpython_typing.WriteableBuffer, destination_length: int)→ None
Records destination_length bytes of samples to destination. This is blocking.

An IOError may be raised when the destination is too slow to record the audio at the given rate. For internal
flash, writing all 1s to the file before recording is recommended to speed up writes.

Returns
The number of samples recorded. If this is less than destination_length, some samples
were missed due to processing time.

audiocore – Support for audio samples

class audiocore.RawSample(buffer: circuitpython_typing.ReadableBuffer, *, channel_count: int = 1,
sample_rate: int = 8000)

A raw audio sample buffer in memory

Create a RawSample based on the given buffer of signed values. If channel_count is more than 1 then each
channel’s samples should alternate. In other words, for a two channel buffer, the first sample will be for channel
1, the second sample will be for channel two, the third for channel 1 and so on.

Parameters

• buffer (ReadableBuffer) – A buffer with samples

• channel_count (int) – The number of channels in the buffer

• sample_rate (int) – The desired playback sample rate

Simple 8ksps 440 Hz sin wave:

import audiocore
import audioio
import board
import array
import time
import math

Generate one period of sine wav.
length = 8000 // 440
sine_wave = array.array("h", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15))

dac = audioio.AudioOut(board.SPEAKER)
sine_wave = audiocore.RawSample(sine_wave)
dac.play(sine_wave, loop=True)
time.sleep(1)
dac.stop()

sample_rate :Optional[int]

32 bit value that dictates how quickly samples are played in Hertz (cycles per second). When the sample is
looped, this can change the pitch output without changing the underlying sample. This will not change the
sample rate of any active playback. Call play again to change it.

deinit()→ None
Deinitialises the RawSample and releases any hardware resources for reuse.

1.8. Full Table of Contents 93

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

__enter__()→ RawSample
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

class audiocore.WaveFile(file: BinaryIO, buffer: circuitpython_typing.WriteableBuffer)
Load a wave file for audio playback

A .wav file prepped for audio playback. Only mono and stereo files are supported. Samples must be 8 bit unsigned
or 16 bit signed. If a buffer is provided, it will be used instead of allocating an internal buffer, which can prevent
memory fragmentation.

Load a .wav file for playback with audioio.AudioOut or audiobusio.I2SOut.

Parameters

• file (BinaryIO) – Already opened wave file

• buffer (WriteableBuffer) – Optional pre-allocated buffer, that will be split in half and
used for double-buffering of the data. The buffer must be 8 to 1024 bytes long. If not pro-
vided, two 256 byte buffers are initially allocated internally.

Playing a wave file from flash:

import board
import audiocore
import audioio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

data = open("cplay-5.1-16bit-16khz.wav", "rb")
wav = audiocore.WaveFile(data)
a = audioio.AudioOut(board.A0)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

sample_rate :int

32 bit value that dictates how quickly samples are loaded into the DAC in Hertz (cycles per second). When
the sample is looped, this can change the pitch output without changing the underlying sample.

bits_per_sample :int

Bits per sample. (read only)

channel_count :int

Number of audio channels. (read only)

deinit()→ None
Deinitialises the WaveFile and releases all memory resources for reuse.

94 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

__enter__()→ WaveFile
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

audioio – Support for audio output

The audioio module contains classes to provide access to audio IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

Since CircuitPython 5, RawSample and WaveFile are moved to audiocore, and Mixer is moved to audiomixer.

For compatibility with CircuitPython 4.x, some builds allow the items in audiocore to be imported from audioio.
This will be removed for all boards in a future build of CircuitPython.

class audioio.AudioOut(left_channel: microcontroller.Pin, *, right_channel: Optional[microcontroller.Pin] =
None, quiescent_value: int = 32768)

Output an analog audio signal

Create a AudioOut object associated with the given pin(s). This allows you to play audio signals out on the given
pin(s).

Parameters

• left_channel (Pin) – The pin to output the left channel to

• right_channel (Pin) – The pin to output the right channel to

• quiescent_value (int) – The output value when no signal is present. Samples should
start and end with this value to prevent audible popping.

Simple 8ksps 440 Hz sin wave:

import audiocore
import audioio
import board
import array
import time
import math

Generate one period of sine wav.
length = 8000 // 440
sine_wave = array.array("H", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)

dac = audioio.AudioOut(board.SPEAKER)
sine_wave = audiocore.RawSample(sine_wave, sample_rate=8000)
dac.play(sine_wave, loop=True)
time.sleep(1)
dac.stop()

Playing a wave file from flash:

1.8. Full Table of Contents 95

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

import board
import audioio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

data = open("cplay-5.1-16bit-16khz.wav", "rb")
wav = audiocore.WaveFile(data)
a = audioio.AudioOut(board.A0)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

playing :bool

True when an audio sample is being output even if paused . (read-only)

paused :bool

True when playback is paused. (read-only)

deinit()→ None
Deinitialises the AudioOut and releases any hardware resources for reuse.

__enter__()→ AudioOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample itself should consist of 16 bit samples. Microcontrollers with a lower output resolution will use
the highest order bits to output. For example, the SAMD21 has a 10 bit DAC that ignores the lowest 6 bits
when playing 16 bit samples.

stop()→ None
Stops playback and resets to the start of the sample.

pause()→ None
Stops playback temporarily while remembering the position. Use resume to resume playback.

resume()→ None
Resumes sample playback after pause().

96 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

audiomixer – Support for audio mixing

class audiomixer.Mixer(voice_count: int = 2, buffer_size: int = 1024, channel_count: int = 2,
bits_per_sample: int = 16, samples_signed: bool = True, sample_rate: int = 8000)

Mixes one or more audio samples together into one sample.

Create a Mixer object that can mix multiple channels with the same sample rate. Samples are accessed and
controlled with the mixer’s audiomixer.MixerVoice objects.

Parameters

• voice_count (int) – The maximum number of voices to mix

• buffer_size (int) – The total size in bytes of the buffers to mix into

• channel_count (int) – The number of channels the source samples contain. 1 = mono; 2
= stereo.

• bits_per_sample (int) – The bits per sample of the samples being played

• samples_signed (bool) – Samples are signed (True) or unsigned (False)

• sample_rate (int) – The sample rate to be used for all samples

Playing a wave file from flash:

import board
import audioio
import audiocore
import audiomixer
import digitalio

a = audioio.AudioOut(board.A0)
music = audiocore.WaveFile(open("cplay-5.1-16bit-16khz.wav", "rb"))
drum = audiocore.WaveFile(open("drum.wav", "rb"))
mixer = audiomixer.Mixer(voice_count=2, sample_rate=16000, channel_count=1,

bits_per_sample=16, samples_signed=True)

print("playing")
Have AudioOut play our Mixer source
a.play(mixer)
Play the first sample voice
mixer.voice[0].play(music)
while mixer.playing:
Play the second sample voice
mixer.voice[1].play(drum)
time.sleep(1)

print("stopped")

playing :bool

True when any voice is being output. (read-only)

sample_rate :int

32 bit value that dictates how quickly samples are played in Hertz (cycles per second).

voice :Tuple[MixerVoice, Ellipsis]

A tuple of the mixer’s audiomixer.MixerVoice object(s).

1.8. Full Table of Contents 97

CircuitPython Documentation, Release 7.3.3

>>> mixer.voice
(<MixerVoice>,)

deinit()→ None
Deinitialises the Mixer and releases any hardware resources for reuse.

__enter__()→ Mixer
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

play(sample: circuitpython_typing.AudioSample, *, voice: int = 0, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample must match the Mixer’s encoding settings given in the constructor.

stop_voice(voice: int = 0)→ None
Stops playback of the sample on the given voice.

class audiomixer.MixerVoice

Voice objects used with Mixer

Used to access and control samples with audiomixer.Mixer.

MixerVoice instance object(s) created by audiomixer.Mixer.

level :float

The volume level of a voice, as a floating point number between 0 and 1.

playing :bool

True when this voice is being output. (read-only)

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False, and continuously when loop=True. Does not block. Use
playing to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample must match the audiomixer.Mixer’s encoding settings given in the constructor.

stop()→ None
Stops playback of the sample on this voice.

98 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

audiomp3 – Support for MP3-compressed audio files

For more infomration about working with MP3 files in CircuitPython, see this CircuitPython Essentials Learn guide
page.

class audiomp3.MP3Decoder(file: BinaryIO, buffer: circuitpython_typing.WriteableBuffer)
Load a mp3 file for audio playback

Note: MP3Decoder uses a lot of contiguous memory, so care should be given to optimizing mem-
ory usage. More information and recommendations can be found here: https://learn.adafruit.com/
Memory-saving-tips-for-CircuitPython/reducing-memory-fragmentation

Load a .mp3 file for playback with audioio.AudioOut or audiobusio.I2SOut.

Parameters

• file (BinaryIO) – Already opened mp3 file

• buffer (WriteableBuffer) – Optional pre-allocated buffer, that will be split in half and
used for double-buffering of the data. If not provided, two buffers are allocated internally.
The specific buffer size required depends on the mp3 file.

Playback of mp3 audio is CPU intensive, and the exact limit depends on many factors such as the particular
microcontroller, SD card or flash performance, and other code in use such as displayio. If playback is garbled,
skips, or plays as static, first try using a “simpler” mp3:

• Use constant bit rate (CBR) not VBR or ABR (variable or average bit rate) when encoding your mp3 file

• Use a lower sample rate (e.g., 11.025kHz instead of 48kHz)

• Use a lower bit rate (e.g., 32kbit/s instead of 256kbit/s)

Reduce activity taking place at the same time as mp3 playback. For instance, only update small portions of a
displayio screen if audio is playing. Disable auto-refresh and explicitly call refresh.

Playing a mp3 file from flash:

import board
import audiomp3
import audioio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

data = open("cplay-16bit-16khz-64kbps.mp3", "rb")
mp3 = audiomp3.MP3Decoder(data)
a = audioio.AudioOut(board.A0)

print("playing")
a.play(mp3)
while a.playing:
pass

print("stopped")

1.8. Full Table of Contents 99

https://learn.adafruit.com/circuitpython-essentials/circuitpython-mp3-audio
https://learn.adafruit.com/circuitpython-essentials/circuitpython-mp3-audio
https://learn.adafruit.com/Memory-saving-tips-for-CircuitPython/reducing-memory-fragmentation
https://learn.adafruit.com/Memory-saving-tips-for-CircuitPython/reducing-memory-fragmentation
https://docs.python.org/3/library/typing.html#typing.BinaryIO

CircuitPython Documentation, Release 7.3.3

file :BinaryIO

File to play back.

sample_rate :int

32 bit value that dictates how quickly samples are loaded into the DAC in Hertz (cycles per second). When
the sample is looped, this can change the pitch output without changing the underlying sample.

bits_per_sample :int

Bits per sample. (read only)

channel_count :int

Number of audio channels. (read only)

rms_level :float

The RMS audio level of a recently played moment of audio. (read only)

samples_decoded :int

The number of audio samples decoded from the current file. (read only)

deinit()→ None
Deinitialises the MP3 and releases all memory resources for reuse.

__enter__()→ MP3Decoder
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

audiopwmio – Audio output via digital PWM

The audiopwmio module contains classes to provide access to audio IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

Since CircuitPython 5, Mixer, RawSample and WaveFile are moved to audiocore.

class audiopwmio.PWMAudioOut(left_channel: microcontroller.Pin, *, right_channel:
Optional[microcontroller.Pin] = None, quiescent_value: int = 32768)

Output an analog audio signal by varying the PWM duty cycle.

Create a PWMAudioOut object associated with the given pin(s). This allows you to play audio signals out on
the given pin(s). In contrast to mod:audioio, the pin(s) specified are digital pins, and are driven with a device-
dependent PWM signal.

Parameters

• left_channel (Pin) – The pin to output the left channel to

• right_channel (Pin) – The pin to output the right channel to

• quiescent_value (int) – The output value when no signal is present. Samples should
start and end with this value to prevent audible popping.

Simple 8ksps 440 Hz sin wave:

100 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

import audiocore
import audiopwmio
import board
import array
import time
import math

Generate one period of sine wav.
length = 8000 // 440
sine_wave = array.array("H", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)

dac = audiopwmio.PWMAudioOut(board.SPEAKER)
sine_wave = audiocore.RawSample(sine_wave, sample_rate=8000)
dac.play(sine_wave, loop=True)
time.sleep(1)
dac.stop()

Playing a wave file from flash:

import board
import audiocore
import audiopwmio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

data = open("cplay-5.1-16bit-16khz.wav", "rb")
wav = audiocore.WaveFile(data)
a = audiopwmio.PWMAudioOut(board.SPEAKER)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

playing :bool

True when an audio sample is being output even if paused . (read-only)

paused :bool

True when playback is paused. (read-only)

deinit()→ None
Deinitialises the PWMAudioOut and releases any hardware resources for reuse.

__enter__()→ PWMAudioOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

1.8. Full Table of Contents 101

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample itself should consist of 16 bit samples. Microcontrollers with a lower output resolution will use
the highest order bits to output.

stop()→ None
Stops playback and resets to the start of the sample.

pause()→ None
Stops playback temporarily while remembering the position. Use resume to resume playback.

resume()→ None
Resumes sample playback after pause().

bitbangio – Digital protocols implemented by the CPU

The bitbangio module contains classes to provide digital bus protocol support regardless of whether the underlying
hardware exists to use the protocol.

First try to use busio module instead which may utilize peripheral hardware to implement the protocols. Native
implementations will be faster than bitbanged versions and have more capabilities.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import bitbangio
from board import *

i2c = bitbangio.I2C(SCL, SDA)
print(i2c.scan())
i2c.deinit()

This example will initialize the the device, run scan() and then deinit() the hardware. The last step is optional
because CircuitPython automatically resets hardware after a program finishes.

class bitbangio.I2C(scl: microcontroller.Pin, sda: microcontroller.Pin, *, frequency: int = 400000, timeout: int
= 255)

Two wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL
and SDA, the clock and data lines respectively.

See also:

Using this class directly requires careful lock management. Instead, use I2CDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

102 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference

CircuitPython Documentation, Release 7.3.3

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• frequency (int) – The clock frequency of the bus

• timeout (int) – The maximum clock stretching timeout in microseconds

deinit()→ None
Releases control of the underlying hardware so other classes can use it.

__enter__()→ I2C
No-op used in Context Managers.

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

scan()→ List[int]
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A device
responds if it pulls the SDA line low after its address (including a read bit) is sent on the bus.

try_lock()→ bool
Attempts to grab the I2C lock. Returns True on success.

unlock()→ None
Releases the I2C lock.

readfrom_into(address: int, buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int =
sys.maxsize)→ None

Read into buffer from the device selected by address. The number of bytes read will be the length of
buffer. At least one byte must be read.

If start or end is provided, then the buffer will be sliced as if buffer[start:end]. This will not cause
an allocation like buf[start:end] will so it saves memory.

Parameters

• address (int) – 7-bit device address

• buffer (WriteableBuffer) – buffer to write into

• start (int) – Index to start writing at

• end (int) – Index to write up to but not include

writeto(address: int, buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)
→ None

Write the bytes from buffer to the device selected by address and then transmits a stop bit. Use
writeto_then_readfrom when needing a write, no stop and repeated start before a read.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Writing a buffer or slice of length zero is permitted, as it can be used to poll for the existence of a device.

Parameters

• address (int) – 7-bit device address

• buffer (ReadableBuffer) – buffer containing the bytes to write

• start (int) – beginning of buffer slice

1.8. Full Table of Contents 103

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• end (int) – end of buffer slice; if not specified, use len(buffer)

writeto_then_readfrom(address: int, out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.ReadableBuffer, *, out_start: int = 0, out_end: int =
sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize)→ None

Write the bytes from out_buffer to the device selected by address, generate no stop bit, generate a
repeated start and read into in_buffer. out_buffer and in_buffer can be the same buffer because
they are used sequentially.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[start:end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end]. :param int address: 7-bit device address :param ~circuit-
python_typing.ReadableBuffer out_buffer: buffer containing the bytes to write :param ~circuit-
python_typing.WriteableBuffer in_buffer: buffer to write into :param int out_start: beginning of
out_buffer slice :param int out_end: end of out_buffer slice; if not specified, use len(out_buffer)
:param int in_start: beginning of in_buffer slice :param int in_end: end of in_buffer slice; if not
specified, use len(in_buffer)

class bitbangio.SPI(clock: microcontroller.Pin, MOSI: Optional[microcontroller.Pin] = None, MISO:
Optional[microcontroller.Pin] = None)

A 3-4 wire serial protocol

SPI is a serial protocol that has exclusive pins for data in and out of the main device. It is typically faster than
I2C because a separate pin is used to select a device rather than a transmitted address. This class only manages
three of the four SPI lines: clock, MOSI, MISO. Its up to the client to manage the appropriate select line, often
abbreviated CS or SS. (This is common because multiple secondaries can share the clock, MOSI and MISO lines
and therefore the hardware.)

Construct an SPI object on the given pins.

See also:

Using this class directly requires careful lock management. Instead, use SPIDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• clock (Pin) – the pin to use for the clock.

• MOSI (Pin) – the Main Out Selected In pin.

• MISO (Pin) – the Main In Selected Out pin.

deinit()→ None
Turn off the SPI bus.

__enter__()→ SPI
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

104 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

configure(*, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8)→ None
Configures the SPI bus. Only valid when locked.

Parameters

• baudrate (int) – the clock rate in Hertz

• polarity (int) – the base state of the clock line (0 or 1)

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising
or falling depends on clock polarity.

• bits (int) – the number of bits per word

try_lock()→ bool
Attempts to grab the SPI lock. Returns True on success.

Returns
True when lock has been grabbed

Return type
bool

unlock()→ None
Releases the SPI lock.

write(buf: circuitpython_typing.ReadableBuffer)→ None
Write the data contained in buf. Requires the SPI being locked. If the buffer is empty, nothing happens.

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize, write_value:
int = 0)→ None

Read into buffer while writing write_value for each byte read. The SPI object must be locked. If the
number of bytes to read is 0, nothing happens.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed. The
number of bytes read will be the length of buffer[start:end].

Parameters

• buffer (WriteableBuffer) – read bytes into this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

• write_value (int) – value to write while reading

write_readinto(out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize,
in_start: int = 0, in_end: int = sys.maxsize)→ None

Write out the data in out_buffer while simultaneously reading data into in_buffer. The SPI object
must be locked.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[out_start:out_end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

The lengths of the slices defined by out_buffer[out_start:out_end] and
in_buffer[in_start:in_end] must be equal. If buffer slice lengths are both 0, nothing happens.

1.8. Full Table of Contents 105

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Parameters

• out_buffer (ReadableBuffer) – write out bytes from this buffer

• in_buffer (WriteableBuffer) – read bytes into this buffer

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

bitmaptools – Collection of bitmap manipulation tools

Note: If you’re looking for information about displaying bitmaps on screens in CircuitPython, see this Learn guide
for information about using the displayio module.

bitmaptools.rotozoom(dest_bitmap: displayio.Bitmap, source_bitmap: displayio.Bitmap, *, ox: int, oy: int,
dest_clip0: Tuple[int, int], dest_clip1: Tuple[int, int], px: int, py: int, source_clip0:
Tuple[int, int], source_clip1: Tuple[int, int], angle: float, scale: float, skip_index: int)→
None

Inserts the source bitmap region into the destination bitmap with rotation (angle), scale and clipping (both on
source and destination bitmaps).

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be copied into

• source_bitmap (bitmap) – Source bitmap that contains the graphical region to be copied

• ox (int) – Horizontal pixel location in destination bitmap where source bitmap point (px,py)
is placed

• oy (int) – Vertical pixel location in destination bitmap where source bitmap point (px,py)
is placed

• dest_clip0 (Tuple[int,int]) – First corner of rectangular destination clipping region
that constrains region of writing into destination bitmap

• dest_clip1 (Tuple[int,int]) – Second corner of rectangular destination clipping region
that constrains region of writing into destination bitmap

• px (int) – Horizontal pixel location in source bitmap that is placed into the destination
bitmap at (ox,oy)

• py (int) – Vertical pixel location in source bitmap that is placed into the destination bitmap
at (ox,oy)

• source_clip0 (Tuple[int,int]) – First corner of rectangular source clipping region that
constrains region of reading from the source bitmap

• source_clip1 (Tuple[int,int]) – Second corner of rectangular source clipping region
that constrains region of reading from the source bitmap

• angle (float) – Angle of rotation, in radians (positive is clockwise direction)

• scale (float) – Scaling factor

106 Chapter 1. CircuitPython

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• skip_index (int) – Bitmap palette index in the source that will not be copied, set to None
to copy all pixels

bitmaptools.alphablend(dest_bitmap: displayio.Bitmap, source_bitmap_1: displayio.Bitmap,
source_bitmap_2: displayio.Bitmap, colorspace: displayio.Colorspace, factor1: float
= 0.5, factor2: float = None)→ None

Alpha blend the two source bitmaps into the destination.

It is permitted for the destination bitmap to be one of the two source bitmaps.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• source_bitmap_1 (bitmap) – The first source bitmap

• source_bitmap_2 (bitmap) – The second source bitmap

• factor1 (float) – The proportion of bitmap 1 to mix in

• factor2 (float) – The proportion of bitmap 2 to mix in. If specified as None, 1-factor1
is used. Usually the proportions should sum to 1.

• colorspace (displayio.Colorspace) – The colorspace of the bitmaps. They must all
have the same colorspace. Only the following colorspaces are permitted: L8, RGB565,
RGB565_SWAPPED, BGR565 and BGR565_SWAPPED.

For the L8 colorspace, the bitmaps must have a bits-per-value of 8. For the RGB colorspaces, they must have a
bits-per-value of 16.

bitmaptools.fill_region(dest_bitmap: displayio.Bitmap, x1: int, y1: int, x2: int, y2: int, value: int)→ None
Draws the color value into the destination bitmap within the rectangular region bounded by (x1,y1) and (x2,y2),
exclusive.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• x1 (int) – x-pixel position of the first corner of the rectangular fill region

• y1 (int) – y-pixel position of the first corner of the rectangular fill region

• x2 (int) – x-pixel position of the second corner of the rectangular fill region (exclusive)

• y2 (int) – y-pixel position of the second corner of the rectangular fill region (exclusive)

• value (int) – Bitmap palette index that will be written into the rectangular fill region in the
destination bitmap

bitmaptools.boundary_fill(dest_bitmap: displayio.Bitmap, x: int, y: int, fill_color_value: int,
replaced_color_value: int)→ None

Draws the color value into the destination bitmap enclosed area of pixels of the background_value color. Like
“Paint Bucket” fill tool.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• x (int) – x-pixel position of the first pixel to check and fill if needed

• y (int) – y-pixel position of the first pixel to check and fill if needed

• fill_color_value (int) – Bitmap palette index that will be written into the enclosed area
in the destination bitmap

1.8. Full Table of Contents 107

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• replaced_color_value (int) – Bitmap palette index that will filled with the value color
in the enclosed area in the destination bitmap

bitmaptools.draw_line(dest_bitmap: displayio.Bitmap, x1: int, y1: int, x2: int, y2: int, value: int)→ None
Draws a line into a bitmap specified two endpoints (x1,y1) and (x2,y2).

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• x1 (int) – x-pixel position of the line’s first endpoint

• y1 (int) – y-pixel position of the line’s first endpoint

• x2 (int) – x-pixel position of the line’s second endpoint

• y2 (int) – y-pixel position of the line’s second endpoint

• value (int) – Bitmap palette index that will be written into the line in the destination bitmap

bitmaptools.arrayblit(bitmap: displayio.Bitmap, data: circuitpython_typing.ReadableBuffer, x1: int = 0, y1:
int = 0, x2: Optional[int] = None, y2: Optional[int] = None, skip_index: Optional[int]
= None)→ None

Inserts pixels from data into the rectangle of width×height pixels with the upper left corner at (x,y)

The values from data are taken modulo the number of color values avalable in the destination bitmap.

If x1 or y1 are not specified, they are taken as 0. If x2 or y2 are not specified, or are given as -1, they are taken
as the width and height of the image.

The coordinates affected by the blit are x1 <= x < x2 and y1 <= y < y2.

data must contain at least as many elements as required. If it contains excess elements, they are ignored.

The blit takes place by rows, so the first elements of data go to the first row, the next elements to the next row,
and so on.

Parameters

• bitmap (displayio.Bitmap) – A writable bitmap

• data (ReadableBuffer) – Buffer containing the source pixel values

• x1 (int) – The left corner of the area to blit into (inclusive)

• y1 (int) – The top corner of the area to blit into (inclusive)

• x2 (int) – The right of the area to blit into (exclusive)

• y2 (int) – The bottom corner of the area to blit into (exclusive)

• skip_index (int) – Bitmap palette index in the source that will not be copied, set to None
to copy all pixels

bitmaptools.readinto(bitmap: displayio.Bitmap, file: BinaryIO, bits_per_pixel: int, element_size: int = 1,
reverse_pixels_in_element: bool = False, swap_bytes_in_element: bool = False,
reverse_rows: bool = False)→ None

Reads from a binary file into a bitmap.

The file must be positioned so that it consists of bitmap.height rows of pixel data, where each row is the
smallest multiple of element_size bytes that can hold bitmap.width pixels.

The bytes in an element can be optionally swapped, and the pixels in an element can be reversed. Also, the row
loading direction can be reversed, which may be requires for loading certain bitmap files.

108 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

This function doesn’t parse image headers, but is useful to speed up loading of uncompressed image formats such
as PCF glyph data.

Parameters

• bitmap (displayio.Bitmap) – A writable bitmap

• file (BinaryIO) – A file opened in binary mode

• bits_per_pixel (int) – Number of bits per pixel. Values 1, 2, 4, 8, 16, 24, and 32 are
supported;

• element_size (int) – Number of bytes per element. Values of 1, 2, and 4 are supported,
except that 24 bits_per_pixel requires 1 byte per element.

• reverse_pixels_in_element (bool) – If set, the first pixel in a word is taken from the
Most Signficant Bits; otherwise, it is taken from the Least Significant Bits.

• swap_bytes_in_element (bool) – If the element_size is not 1, then reverse the byte
order of each element read.

• reverse_rows (bool) – Reverse the direction of the row loading (required for some bitmap
images).

class bitmaptools.DitherAlgorithm

Identifies the algorith for dither to use

Atkinson :DitherAlgorithm

The classic Atkinson dither, often associated with the Hypercard esthetic

FloydStenberg :DitherAlgorithm

The Floyd-Stenberg dither

bitmaptools.dither(dest_bitmap: displayio.Bitmap, source_bitmapp: displayio.Bitmap, source_colorspace:
displayio.Colorspace, algorithm: DitherAlgorithm = DitherAlgorithm.Atkinson)→ None

Convert the input image into a 2-level output image using the given dither algorithm.

Parameters

• dest_bitmap (bitmap) – Destination bitmap. It must have a value_count of 2 or 65536.
The stored values are 0 and the maximum pixel value.

• source_bitmap (bitmap) – Source bitmap that contains the graphical region to be dithered.
It must have a value_count of 65536.

• colorspace – The colorspace of the image. The supported colorspaces are RGB565,
BGR565, RGB565_SWAPPED, and BGR565_SWAPPED

• algorithm – The dither algorithm to use, one of the DitherAlgorithm values.

bitops – Routines for low-level manipulation of binary data

bitops.bit_transpose(input: circuitpython_typing.ReadableBuffer, output:
circuitpython_typing.WriteableBuffer, width: int = 8)→
circuitpython_typing.WriteableBuffer

“Transpose” a buffer by assembling each output byte with bits taken from each of width different input bytes.

This can be useful to convert a sequence of pixel values into a single stream of bytes suitable for sending via a
parallel conversion method.

1.8. Full Table of Contents 109

https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

The number of bytes in the input buffer must be a multiple of the width, and the width can be any value from 2
to 8. If the width is fewer than 8, then the remaining (less significant) bits of the output are set to zero.

Let stride = len(input)//width. Then the first byte is made out of the most significant bits of [input[0],
input[stride], input[2*stride], ...]. The second byte is made out of the second bits, and so on until
the 8th output byte which is made of the first bits of input[1], input[1+stride, input[2*stride], ..
.].

The required output buffer size is len(input) * 8 // width.

Returns the output buffer.

board – Board specific pin names

Common container for board base pin names. These will vary from board to board so don’t expect portability when
using this module.

Another common use of this module is to use serial communciation buses with the default pins and settings. For more
information about serial communcication in CircuitPython, see the busio.

For more information regarding the typical usage of board , refer to the CircuitPython Essentials Learn guide

Warning: The board module varies by board. The APIs documented here may or may not be available on a
specific board.

board.board_id :str

Board ID string. The unique identifier for the board model in circuitpython, as well as on circuitpython.org.
Example: “hallowing_m0_express”.

board.I2C()→ busio.I2C
Returns the busio.I2C object for the board’s designated I2C bus(es). The object created is a singleton, and uses
the default parameter values for busio.I2C.

board.SPI()→ busio.SPI
Returns the busio.SPI object for the board’s designated SPI bus(es). The object created is a singleton, and uses
the default parameter values for busio.SPI.

board.UART()→ busio.UART
Returns the busio.UART object for the board’s designated UART bus(es). The object created is a singleton, and
uses the default parameter values for busio.UART.

busio – Hardware accelerated external bus access

The busio module contains classes to support a variety of serial protocols.

When the microcontroller does not support the behavior in a hardware accelerated fashion it may internally use a bitbang
routine. However, if hardware support is available on a subset of pins but not those provided, then a RuntimeError will
be raised. Use the bitbangio module to explicitly bitbang a serial protocol on any general purpose pins.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

110 Chapter 1. CircuitPython

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules

CircuitPython Documentation, Release 7.3.3

import busio
from board import *

i2c = busio.I2C(SCL, SDA)
print(i2c.scan())
i2c.deinit()

This example will initialize the the device, run scan() and then deinit() the hardware. The last step is optional
because CircuitPython automatically resets hardware after a program finishes.

Note that drivers will typically handle communication if provided the bus instance (such as busio.I2C(board.SCL,
board.SDA)), and that many of the methods listed here are lower level functionalities that are needed for working with
custom drivers.

Tutorial for I2C and SPI: https://learn.adafruit.com/circuitpython-basics-i2c-and-spi

Tutorial for UART: https://learn.adafruit.com/circuitpython-essentials/circuitpython-uart-serial

class busio.I2C(scl: microcontroller.Pin, sda: microcontroller.Pin, *, frequency: int = 100000, timeout: int =
255)

Two wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL
and SDA, the clock and data lines respectively.

See also:

Using this class directly requires careful lock management. Instead, use I2CDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• frequency (int) – The clock frequency in Hertz

• timeout (int) – The maximum clock stretching timeut - (used only for bitbangio.I2C;
ignored for busio.I2C)

deinit()→ None
Releases control of the underlying hardware so other classes can use it.

__enter__()→ I2C
No-op used in Context Managers.

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

scan()→ List[int]
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond.

Returns
List of device ids on the I2C bus

1.8. Full Table of Contents 111

https://learn.adafruit.com/circuitpython-basics-i2c-and-spi
https://learn.adafruit.com/circuitpython-essentials/circuitpython-uart-serial
https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Return type
list

try_lock()→ bool
Attempts to grab the I2C lock. Returns True on success.

Returns
True when lock has been grabbed

Return type
bool

unlock()→ None
Releases the I2C lock.

readfrom_into(address: int, buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int =
sys.maxsize)→ None

Read into buffer from the device selected by address. At least one byte must be read.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes read will be the length of buffer[start:end].

Parameters

• address (int) – 7-bit device address

• buffer (WriteableBuffer) – buffer to write into

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

writeto(address: int, buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)
→ None

Write the bytes from buffer to the device selected by address and then transmit a stop bit.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Writing a buffer or slice of length zero is permitted, as it can be used to poll for the existence of a device.

Parameters

• address (int) – 7-bit device address

• buffer (ReadableBuffer) – buffer containing the bytes to write

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

writeto_then_readfrom(address: int, out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int =
sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize)→ None

Write the bytes from out_buffer to the device selected by address, generate no stop bit, generate a
repeated start and read into in_buffer. out_buffer and in_buffer can be the same buffer because
they are used sequentially.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[start:end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of

112 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

out_buffer[in_start:in_end]. :param int address: 7-bit device address :param ~circuit-
python_typing.ReadableBuffer out_buffer: buffer containing the bytes to write :param ~circuit-
python_typing.WriteableBuffer in_buffer: buffer to write into :param int out_start: beginning of
out_buffer slice :param int out_end: end of out_buffer slice; if not specified, use len(out_buffer)
:param int in_start: beginning of in_buffer slice :param int in_end: end of in_buffer slice; if not
specified, use len(in_buffer)

class busio.SPI(clock: microcontroller.Pin, MOSI: Optional[microcontroller.Pin] = None, MISO:
Optional[microcontroller.Pin] = None, half_duplex: bool = False)

A 3-4 wire serial protocol

SPI is a serial protocol that has exclusive pins for data in and out of the main device. It is typically faster than
I2C because a separate pin is used to select a device rather than a transmitted address. This class only manages
three of the four SPI lines: clock, MOSI, MISO. Its up to the client to manage the appropriate select line, often
abbreviated CS or SS. (This is common because multiple secondaries can share the clock, MOSI and MISO lines
and therefore the hardware.)

Construct an SPI object on the given pins.

Note: The SPI peripherals allocated in order of desirability, if possible, such as highest speed and not shared use
first. For instance, on the nRF52840, there is a single 32MHz SPI peripheral, and multiple 8MHz peripherals,
some of which may also be used for I2C. The 32MHz SPI peripheral is returned first, then the exclusive 8MHz
SPI peripheral, and finally the shared 8MHz peripherals.

See also:

Using this class directly requires careful lock management. Instead, use SPIDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• clock (Pin) – the pin to use for the clock.

• MOSI (Pin) – the Main Out Selected In pin.

• MISO (Pin) – the Main In Selected Out pin.

• half_duplex (bool) – True when MOSI is used for bidirectional data. False when SPI is
full-duplex or simplex.

frequency :int

The actual SPI bus frequency. This may not match the frequency requested due to internal limitations.

deinit()→ None
Turn off the SPI bus.

__enter__()→ SPI
No-op used by Context Managers. Provided by context manager helper.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

1.8. Full Table of Contents 113

https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

configure(*, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8)→ None
Configures the SPI bus. The SPI object must be locked.

Parameters

• baudrate (int) – the desired clock rate in Hertz. The actual clock rate may be higher or
lower due to the granularity of available clock settings. Check the frequency attribute for
the actual clock rate.

• polarity (int) – the base state of the clock line (0 or 1)

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising
or falling depends on clock polarity.

• bits (int) – the number of bits per word

Note: On the SAMD21, it is possible to set the baudrate to 24 MHz, but that speed is not guaranteed to
work. 12 MHz is the next available lower speed, and is within spec for the SAMD21.

Note: On the nRF52840, these baudrates are available: 125kHz, 250kHz, 1MHz, 2MHz, 4MHz, and
8MHz. If you pick a a baudrate other than one of these, the nearest lower baudrate will be chosen, with a
minimum of 125kHz. Two SPI objects may be created, except on the Circuit Playground Bluefruit, which
allows only one (to allow for an additional I2C object).

try_lock()→ bool
Attempts to grab the SPI lock. Returns True on success.

Returns
True when lock has been grabbed

Return type
bool

unlock()→ None
Releases the SPI lock.

write(buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)→ None
Write the data contained in buffer. The SPI object must be locked. If the buffer is empty, nothing happens.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Parameters

• buffer (ReadableBuffer) – write out bytes from this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize, write_value:
int = 0)→ None

Read into buffer while writing write_value for each byte read. The SPI object must be locked. If the
number of bytes to read is 0, nothing happens.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed. The
number of bytes read will be the length of buffer[start:end].

Parameters

114 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• buffer (WriteableBuffer) – read bytes into this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, it will be the equivalent value
of len(buffer) and for any value provided it will take the value of min(end,
len(buffer))

• write_value (int) – value to write while reading

write_readinto(out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize,
in_start: int = 0, in_end: int = sys.maxsize)→ None

Write out the data in out_buffer while simultaneously reading data into in_buffer. The SPI object
must be locked.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[out_start:out_end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

The lengths of the slices defined by out_buffer[out_start:out_end] and
in_buffer[in_start:in_end] must be equal. If buffer slice lengths are both 0, nothing happens.

Parameters

• out_buffer (ReadableBuffer) – write out bytes from this buffer

• in_buffer (WriteableBuffer) – read bytes into this buffer

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

class busio.UART(tx: microcontroller.Pin, rx: microcontroller.Pin, *, baudrate: int = 9600, bits: int = 8, parity:
Optional[Parity] = None, stop: int = 1, timeout: float = 1, receiver_buffer_size: int = 64)

A bidirectional serial protocol

A common bidirectional serial protocol that uses an an agreed upon speed rather than a shared clock line.

Parameters

• tx (Pin) – the pin to transmit with, or None if this UART is receive-only.

• rx (Pin) – the pin to receive on, or None if this UART is transmit-only.

• rts (Pin) – the pin for rts, or None if rts not in use.

• cts (Pin) – the pin for cts, or None if cts not in use.

• rs485_dir (Pin) – the output pin for rs485 direction setting, or None if rs485 not in use.

• rs485_invert (bool) – rs485_dir pin active high when set. Active low otherwise.

• baudrate (int) – the transmit and receive speed.

• bits (int) – the number of bits per byte, 5 to 9.

• parity (Parity) – the parity used for error checking.

1.8. Full Table of Contents 115

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• stop (int) – the number of stop bits, 1 or 2.

• timeout (float) – the timeout in seconds to wait for the first character and between subse-
quent characters when reading. Raises ValueError if timeout >100 seconds.

• receiver_buffer_size (int) – the character length of the read buffer (0 to disable).
(When a character is 9 bits the buffer will be 2 * receiver_buffer_size bytes.)

New in CircuitPython 4.0: timeout has incompatibly changed units from milliseconds to seconds. The new
upper limit on timeout is meant to catch mistaken use of milliseconds.

Note: RS485 support on i.MX and Raspberry Pi RP2040 is implemented in software. The timing for the
rs485_dir pin signal is done on a best-effort basis, and may not meet RS485 specifications intermittently.

baudrate :int

The current baudrate.

in_waiting :int

The number of bytes in the input buffer, available to be read

timeout :float

The current timeout, in seconds (float).

deinit()→ None
Deinitialises the UART and releases any hardware resources for reuse.

__enter__()→ UART
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

read(nbytes: Optional[int] = None)→ Optional[bytes]
Read characters. If nbytes is specified then read at most that many bytes. Otherwise, read everything
that arrives until the connection times out. Providing the number of bytes expected is highly recommended
because it will be faster.

Returns
Data read

Return type
bytes or None

readinto(buf: circuitpython_typing.WriteableBuffer)→ Optional[int]
Read bytes into the buf. Read at most len(buf) bytes.

Returns
number of bytes read and stored into buf

Return type
int or None (on a non-blocking error)

New in CircuitPython 4.0: No length parameter is permitted.

readline()→ bytes

Read a line, ending in a newline character, or
return None if a timeout occurs sooner, or return everything readable if no newline is found and time-
out=0

116 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Returns
the line read

Return type
bytes or None

write(buf: circuitpython_typing.WriteableBuffer)→ Optional[int]
Write the buffer of bytes to the bus.

New in CircuitPython 4.0: buf must be bytes, not a string.

return
the number of bytes written

rtype
int or None

reset_input_buffer()→ None
Discard any unread characters in the input buffer.

class busio.Parity

Enum-like class to define the parity used to verify correct data transfer.

ODD :int

Total number of ones should be odd.

EVEN :int

Total number of ones should be even.

camera – Support for camera input

The camera module contains classes to control the camera and take pictures.

class camera.Camera

The class to control camera.

Usage:

import board
import sdioio
import storage
import camera

sd = sdioio.SDCard(
clock=board.SDIO_CLOCK,
command=board.SDIO_COMMAND,
data=board.SDIO_DATA,
frequency=25000000)

vfs = storage.VfsFat(sd)
storage.mount(vfs, '/sd')

cam = camera.Camera()

buffer = bytearray(512 * 1024)
file = open("/sd/image.jpg","wb")
size = cam.take_picture(buffer, width=1920, height=1080, format=camera.ImageFormat.

(continues on next page)

1.8. Full Table of Contents 117

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

→˓JPG)
file.write(buffer, size)
file.close()

Initialize camera.

deinit()→ None
De-initialize camera.

take_picture(buf: circuitpython_typing.WriteableBuffer, format: ImageFormat)→ int
Take picture and save to buf in the given format. The size of the picture taken is width by height in
pixels.

Returns
the number of bytes written into buf

Return type
int

class camera.ImageFormat

Image format

Enum-like class to define the image format.

JPG :ImageFormat

JPG format.

RGB565 :ImageFormat

RGB565 format.

canio – CAN bus access

The canio module contains low level classes to support the CAN bus protocol.

CAN and Listener classes change hardware state and should be deinitialized when they are no longer needed if the pro-
gram continues after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers
for more info.

For example:

import canio
from board import *

can = canio.CAN(board.CAN_RX, board.CAN_TX, baudrate=1000000)
message = canio.Message(id=0x0408, data=b"adafruit")
can.send(message)
can.deinit()

This example will write the data ‘adafruit’ onto the CAN bus to any device listening for message id 0x0408.

A CAN bus involves a transceiver, which is often a separate chip with a “standby” pin. If your board has a
CAN_STANDBY pin, ensure to set it to an output with the value False to enable the transceiver.

Other implementations of the CAN device may exist (for instance, attached via an SPI bus). If so their constructor
arguments may differ, but otherwise we encourage implementors to follow the API that the core uses.

118 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

class canio.BusState

The state of the CAN bus

ERROR_ACTIVE :object

The bus is in the normal (active) state

ERROR_WARNING :object

The bus is in the normal (active) state, but a moderate number of errors have occurred recently.

Note: Not all implementations may use ERROR_WARNING. Do not rely on seeing ERROR_WARNING before
ERROR_PASSIVE.

ERROR_PASSIVE :object

The bus is in the passive state due to the number of errors that have occurred recently.

This device will acknowledge packets it receives, but cannot transmit messages. If additional errors occur,
this device may progress to BUS_OFF. If it successfully acknowledges other packets on the bus, it can
return to ERROR_WARNING or ERROR_ACTIVE and transmit packets.

BUS_OFF :object

The bus has turned off due to the number of errors that have occurred recently. It must be restarted before
it will send or receive packets. This device will neither send or acknowledge packets on the bus.

class canio.CAN(tx: microcontroller.Pin, rx: microcontroller.Pin, *, baudrate: int = 250000, loopback: bool =
False, silent: bool = False, auto_restart: bool = False)

CAN bus protocol

A common shared-bus protocol. The rx and tx pins are generally connected to a transceiver which controls the
H and L pins on a shared bus.

Parameters

• rx (Pin) – the pin to receive with

• tx (Pin) – the pin to transmit with

• baudrate (int) – The bit rate of the bus in Hz. All devices on the bus must agree on this
value.

• loopback (bool) – When True the rx pin’s value is ignored, and the device receives the
packets it sends.

• silent (bool) – When True the tx pin is always driven to the high logic level. This mode
can be used to “sniff” a CAN bus without interfering.

• auto_restart (bool) – If True, will restart communications after entering bus-off state

auto_restart :bool

If True, will restart communications after entering bus-off state

baudrate :int

The baud rate (read-only)

transmit_error_count :int

The number of transmit errors (read-only). Increased for a detected transmission error, decreased for suc-
cessful transmission. Limited to the range from 0 to 255 inclusive. Also called TEC.

1.8. Full Table of Contents 119

CircuitPython Documentation, Release 7.3.3

receive_error_count :int

The number of receive errors (read-only). Increased for a detected reception error, decreased for successful
reception. Limited to the range from 0 to 255 inclusive. Also called REC.

state :BusState

The current state of the bus. (read-only)

loopback :bool

True if the device was created in loopback mode, False otherwise (read-only)

silent :bool

True if the device was created in silent mode, False otherwise (read-only)

restart()→ None
If the device is in the bus off state, restart it.

listen(matches: Optional[Sequence[Match]] = None, *, timeout: float = 10)→ Listener
Start receiving messages that match any one of the filters.

Creating a listener is an expensive operation and can interfere with reception of messages by other listeners.

There is an implementation-defined maximum number of listeners and limit to the complexity of the filters.

If the hardware cannot support all the requested matches, a ValueError is raised. Note that generally there
are some number of hardware filters shared among all fifos.

A message can be received by at most one Listener. If more than one listener matches a message, it is
undefined which one actually receives it.

An empty filter list causes all messages to be accepted.

Timeout dictates how long receive() and next() will block.

Platform specific notes:

SAM E5x supports two Listeners. Filter blocks are shared between the two listeners. There are 4 stan-
dard filter blocks and 4 extended filter blocks. Each block can either match 2 single addresses or a mask
of addresses. The number of filter blocks can be increased, up to a hardware maximum, by rebuilding
CircuitPython, but this decreases the CircuitPython free memory even if canio is not used.

STM32F405 supports two Listeners. Filter blocks are shared between the two listeners. There are 14 filter
blocks. Each block can match 2 standard addresses with mask or 1 extended address with mask.

ESP32S2 supports one Listener. There is a single filter block, which can either match a standard address
with mask or an extended address with mask.

send(message: Union[RemoteTransmissionRequest, Message])→ None
Send a message on the bus with the given data and id. If the message could not be sent due to a full fifo or
a bus error condition, RuntimeError is raised.

deinit()→ None
Deinitialize this object, freeing its hardware resources

__enter__()→ CAN
Returns self, to allow the object to be used in a The with statement statement for resource control

__exit__(unused1: Optional[Type[BaseException]], unused2: Optional[BaseException], unused3:
Optional[types.TracebackType])→ None

Calls deinit()

120 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

class canio.Listener

Listens for CAN message

canio.Listener is not constructed directly, but instead by calling canio.CAN.listen.

In addition to using the receive method to retrieve a message or the in_waiting method to check for an
available message, a listener can be used as an iterable, yielding messages until no message arrives within self.
timeout seconds.

timeout :float

receive()→ Optional[Union[RemoteTransmissionRequest, Message]]
Reads a message, after waiting up to self.timeout seconds

If no message is received in time, None is returned. Otherwise, a Message or
RemoteTransmissionRequest is returned.

in_waiting()→ int
Returns the number of messages (including remote transmission requests) waiting

__iter__()→ Listener
Returns self

This method exists so that Listener can be used as an iterable

__next__()→ Union[RemoteTransmissionRequest, Message]
Reads a message, after waiting up to self.timeout seconds

If no message is received in time, raises StopIteration. Otherwise, a Message or is returned.

This method enables the Listener to be used as an iterable, for instance in a for-loop.

deinit()→ None
Deinitialize this object, freeing its hardware resources

__enter__()→ CAN
Returns self, to allow the object to be used in a The with statement statement for resource control

__exit__(unused1: Optional[Type[BaseException]], unused2: Optional[BaseException], unused3:
Optional[types.TracebackType])→ None

Calls deinit()

class canio.Match(id: int, *, mask: Optional[int] = None, extended: bool = False)
Describe CAN bus messages to match

Construct a Match with the given properties.

If mask is not None, then the filter is for any id which matches all the nonzero bits in mask. Otherwise, it
matches exactly the given id. If extended is true then only extended ids are matched, otherwise only standard ids
are matched.

id :int

The id to match

mask :int

The optional mask of ids to match

extended :bool

True to match extended ids, False to match standard ides

1.8. Full Table of Contents 121

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

class canio.Message(id: int, data: bytes, *, extended: bool = False)
Construct a Message to send on a CAN bus.

Parameters

• id (int) – The numeric ID of the message

• data (bytes) – The content of the message

• extended (bool) – True if the message has an extended identifier, False if it has a standard
identifier

In CAN, messages can have a length from 0 to 8 bytes.

id :int

The numeric ID of the message

data :bytes

The content of the message

extended :bool

True if the message’s id is an extended id

class canio.RemoteTransmissionRequest(id: int, length: int, *, extended: bool = False)
Construct a RemoteTransmissionRequest to send on a CAN bus.

Parameters

• id (int) – The numeric ID of the requested message

• length (int) – The length of the requested message

• extended (bool) – True if the message has an extended identifier, False if it has a standard
identifier

In CAN, messages can have a length from 0 to 8 bytes.

id :int

The numeric ID of the message

extended :bool

True if the message’s id is an extended id

length :int

The length of the requested message.

countio – Support for edge counting

The countio module contains logic to read and count edge transistions

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class countio.Edge

Enumerates which signal transitions can be counted.

Enum-like class to define which signal transitions to count.

RISE :Edge

Count the rising edges.

122 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

FALL :Edge

Count the falling edges.

RISE_AND_FALL :Edge

Count the rising and falling edges.

class countio.Counter(pin: microcontroller.Pin, *, edge: Edge = Edge.FALL, pull: Optional[digitalio.Pull] =
None)

Count the number of rising- and/or falling-edge transitions on a given pin.

Create a Counter object associated with the given pin that counts rising- and/or falling-edge transitions. At least
one of rise and fall must be True. The default is to count only falling edges, and is for historical backward
compatibility.

Parameters

• pin (Pin) – pin to monitor

• edge (Edge) – which edge transitions to count

• pull (Optional[digitalio.Pull]) – enable a pull-up or pull-down if not None

For example:

import board
import countio

Count rising edges only.
pin_counter = countio.Counter(board.D1, edge=Edge.RISE)
Reset the count after 100 counts.
while True:

if pin_counter.count >= 100:
pin_counter.reset()

print(pin_counter.count)

count :int

The current count in terms of pulses.

deinit()→ None
Deinitializes the Counter and releases any hardware resources for reuse.

__enter__()→ Counter
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

reset()→ None
Resets the count back to 0.

1.8. Full Table of Contents 123

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

digitalio – Basic digital pin support

The digitalio module contains classes to provide access to basic digital IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import digitalio
import board

pin = digitalio.DigitalInOut(board.LED)
print(pin.value)

This example will initialize the the device, read value and then deinit() the hardware.

Here is blinky:

import time
import digitalio
import board

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT
while True:

led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.1)

For the essentials of digitalio, see the CircuitPython Essentials Learn guide

For more information on using digitalio, see this additional Learn guide

class digitalio.DriveMode

Defines the drive mode of a digital pin

Enum-like class to define the drive mode used when outputting digital values.

PUSH_PULL :DriveMode

Output both high and low digital values

OPEN_DRAIN :DriveMode

Output low digital values but go into high z for digital high. This is useful for i2c and other protocols that
share a digital line.

class digitalio.DigitalInOut(pin: microcontroller.Pin)
Digital input and output

A DigitalInOut is used to digitally control I/O pins. For analog control of a pin, see the analogio.AnalogIn
and analogio.AnalogOut classes.

Create a new DigitalInOut object associated with the pin. Defaults to input with no pull. Use
switch_to_input() and switch_to_output() to change the direction.

Parameters
pin (Pin) – The pin to control

124 Chapter 1. CircuitPython

https://learn.adafruit.com/circuitpython-essentials/circuitpython-digital-in-out
https://learn.adafruit.com/circuitpython-digital-inputs-and-outputs

CircuitPython Documentation, Release 7.3.3

direction :Direction

The direction of the pin.

Setting this will use the defaults from the corresponding switch_to_input() or switch_to_output()
method. If you want to set pull, value or drive mode prior to switching, then use those methods instead.

value :bool

The digital logic level of the pin.

drive_mode :DriveMode

The pin drive mode. One of:

• digitalio.DriveMode.PUSH_PULL

• digitalio.DriveMode.OPEN_DRAIN

pull :Optional[Pull]

The pin pull direction. One of:

• digitalio.Pull.UP

• digitalio.Pull.DOWN

• None

Raises
AttributeError – if direction is OUTPUT.

deinit()→ None
Turn off the DigitalInOut and release the pin for other use.

__enter__()→ DigitalInOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

switch_to_output(value: bool = False, drive_mode: DriveMode = DriveMode.PUSH_PULL)→ None
Set the drive mode and value and then switch to writing out digital values.

Parameters

• value (bool) – default value to set upon switching

• drive_mode (DriveMode) – drive mode for the output

switch_to_input(pull: Optional[Pull] = None)→ None
Set the pull and then switch to read in digital values.

Parameters
pull (Pull) – pull configuration for the input

Example usage:

import digitalio
import board

switch = digitalio.DigitalInOut(board.SLIDE_SWITCH)
switch.switch_to_input(pull=digitalio.Pull.UP)

(continues on next page)

1.8. Full Table of Contents 125

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

Or, after switch_to_input
switch.pull = digitalio.Pull.UP
print(switch.value)

class digitalio.Direction

Defines the direction of a digital pin

Enum-like class to define which direction the digital values are going.

INPUT :Direction

Read digital data in

OUTPUT :Direction

Write digital data out

class digitalio.Pull

Defines the pull of a digital input pin

Enum-like class to define the pull value, if any, used while reading digital values in.

UP :Pull

When the input line isn’t being driven the pull up can pull the state of the line high so it reads as true.

DOWN :Pull

When the input line isn’t being driven the pull down can pull the state of the line low so it reads as false.

displayio – Native helpers for driving displays

The displayio module contains classes to manage display output including synchronizing with refresh rates and
partial updating.

For more a more thorough explanation and guide for using displayio, please refer to this Learn guide.

displayio.release_displays()→ None
Releases any actively used displays so their busses and pins can be used again. This will also release the builtin
display on boards that have one. You will need to reinitialize it yourself afterwards. This may take seconds to
complete if an active EPaperDisplay is refreshing.

Use this once in your code.py if you initialize a display. Place it right before the initialization so the display is
active as long as possible.

class displayio.Colorspace

The colorspace for a ColorConverter to operate in

RGB888 :Colorspace

The standard 24-bit colorspace. Bits 0-7 are blue, 8-15 are green, and 16-24 are red. (0xRRGGBB)

RGB565 :Colorspace

The standard 16-bit colorspace. Bits 0-4 are blue, bits 5-10 are green, and 11-15 are red (0bR-
RRRRGGGGGGBBBBB)

RGB565_SWAPPED :Colorspace

The swapped 16-bit colorspace. First, the high and low 8 bits of the number are swapped, then they are
interpreted as for RGB565

126 Chapter 1. CircuitPython

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

RGB555 :Colorspace

The standard 15-bit colorspace. Bits 0-4 are blue, bits 5-9 are green, and 11-14 are red. The top bit is
ignored. (0bxRRRRRGGGGGBBBBB)

RGB555_SWAPPED :Colorspace

The swapped 15-bit colorspace. First, the high and low 8 bits of the number are swapped, then they are
interpreted as for RGB555

class displayio.Bitmap(width: int, height: int, value_count: int)
Stores values of a certain size in a 2D array

Bitmaps can be treated as read-only buffers. If the number of bits in a pixel is 8, 16, or 32; and the number
of bytes per row is a multiple of 4, then the resulting memoryview will correspond directly with the bitmap’s
contents. Otherwise, the bitmap data is packed into the memoryview with unspecified padding.

A Bitmap can be treated as a buffer, allowing its content to be viewed and modified using e.g., with ulab.numpy.
frombuffer, but the displayio.Bitmap.dirty method must be used to inform displayio when a bitmap was
modified through the buffer interface.

bitmaptools.arrayblit can also be useful to move data efficiently into a Bitmap.

Create a Bitmap object with the given fixed size. Each pixel stores a value that is used to index into a corre-
sponding palette. This enables differently colored sprites to share the underlying Bitmap. value_count is used to
minimize the memory used to store the Bitmap.

Parameters

• width (int) – The number of values wide

• height (int) – The number of values high

• value_count (int) – The number of possible pixel values.

width :int

Width of the bitmap. (read only)

height :int

Height of the bitmap. (read only)

__getitem__(index: Union[Tuple[int, int], int])→ int
Returns the value at the given index. The index can either be an x,y tuple or an int equal to y * width +
x.

This allows you to:

print(bitmap[0,1])

__setitem__(index: Union[Tuple[int, int], int], value: int)→ None
Sets the value at the given index. The index can either be an x,y tuple or an int equal to y * width + x.

This allows you to:

bitmap[0,1] = 3

blit(x: int, y: int, source_bitmap: Bitmap, *, x1: int, y1: int, x2: int, y2: int, skip_index: int)→ None

Inserts the source_bitmap region defined by rectangular boundaries
(x1,y1) and (x2,y2) into the bitmap at the specified (x,y) location.

Parameters

1.8. Full Table of Contents 127

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• x (int) – Horizontal pixel location in bitmap where source_bitmap upper-left corner will
be placed

• y (int) – Vertical pixel location in bitmap where source_bitmap upper-left corner will be
placed

• source_bitmap (bitmap) – Source bitmap that contains the graphical region to be copied

• x1 (int) – Minimum x-value for rectangular bounding box to be copied from the source
bitmap

• y1 (int) – Minimum y-value for rectangular bounding box to be copied from the source
bitmap

• x2 (int) – Maximum x-value (exclusive) for rectangular bounding box to be copied from
the source bitmap

• y2 (int) – Maximum y-value (exclusive) for rectangular bounding box to be copied from
the source bitmap

• skip_index (int) – bitmap palette index in the source that will not be copied, set to None
to copy all pixels

fill(value: int)→ None
Fills the bitmap with the supplied palette index value.

dirty(x1: int = 0, y1: int = 0, x2: int = -1, y2: int = -1)→ None
Inform displayio of bitmap updates done via the buffer protocol.

Parameters

• x1 (int) – Minimum x-value for rectangular bounding box to be considered as modified

• y1 (int) – Minimum y-value for rectangular bounding box to be considered as modified

• x2 (int) – Maximum x-value (exclusive) for rectangular bounding box to be considered as
modified

• y2 (int) – Maximum y-value (exclusive) for rectangular bounding box to be considered as
modified

If x1 or y1 are not specified, they are taken as 0. If x2 or y2 are not specified, or are given as -1, they are
taken as the width and height of the image. Thus, calling dirty() with the default arguments treats the whole
bitmap as modified.

When a bitmap is modified through the buffer protocol, the display will not be properly updated unless the
bitmap is notified of the “dirty rectangle” that encloses all modified pixels.

class displayio.ColorConverter(*, input_colorspace: Colorspace = Colorspace.RGB888, dither: bool =
False)

Converts one color format to another.

Create a ColorConverter object to convert color formats.

Parameters

• colorspace (Colorspace) – The source colorspace, one of the Colorspace constants

• dither (bool) – Adds random noise to dither the output image

dither :bool

When True the ColorConverter dithers the output by adding random noise when truncating to display
bitdepth

128 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True

CircuitPython Documentation, Release 7.3.3

convert(color: int)→ int
Converts the given color to RGB565 according to the Colorspace

make_transparent(color: int)→ None
Set the transparent color or index for the ColorConverter. This will raise an Exception if there is already a
selected transparent index.

Parameters
color (int) – The color to be transparent

make_opaque(color: int)→ None
Make the ColorConverter be opaque and have no transparent pixels.

Parameters
color (int) – [IGNORED] Use any value

displayio._DisplayBus

FourWire, paralleldisplay.ParallelBus or I2CDisplay

class displayio.Display(display_bus: _DisplayBus, init_sequence: circuitpython_typing.ReadableBuffer, *,
width: int, height: int, colstart: int = 0, rowstart: int = 0, rotation: int = 0,
color_depth: int = 16, grayscale: bool = False, pixels_in_byte_share_row: bool =
True, bytes_per_cell: int = 1, reverse_pixels_in_byte: bool = False,
set_column_command: int = 42, set_row_command: int = 43, write_ram_command:
int = 44, backlight_pin: Optional[microcontroller.Pin] = None,
brightness_command: Optional[int] = None, brightness: float = 1.0,
auto_brightness: bool = False, single_byte_bounds: bool = False,
data_as_commands: bool = False, auto_refresh: bool = True,
native_frames_per_second: int = 60, backlight_on_high: bool = True,
SH1107_addressing: bool = False)

Manage updating a display over a display bus

This initializes a display and connects it into CircuitPython. Unlike other objects in CircuitPython, Display
objects live until displayio.release_displays() is called. This is done so that CircuitPython can use the
display itself.

Most people should not use this class directly. Use a specific display driver instead that will contain the initial-
ization sequence at minimum.

Create a Display object on the given display bus (FourWire, ParallelBus or I2CDisplay).

The init_sequence is bitpacked to minimize the ram impact. Every command begins with a command byte
followed by a byte to determine the parameter count and delay. When the top bit of the second byte is 1 (0x80), a
delay will occur after the command parameters are sent. The remaining 7 bits are the parameter count excluding
any delay byte. The bytes following are the parameters. When the delay bit is set, a single byte after the parameters
specifies the delay duration in milliseconds. The value 0xff will lead to an extra long 500 ms delay instead of
255 ms. The next byte will begin a new command definition. Here is an example:

init_sequence = (b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\
→˓x0F" # Set Gamma

b"\x11\x80\x78"# Exit Sleep then delay 0x78 (120ms)
b"\x29\x81\xaa\x78"# Display on then delay 0x78 (120ms)
)

display = displayio.Display(display_bus, init_sequence, width=320, height=240)

The first command is 0xe1 with 15 (0xf) parameters following. The second is 0x11 with 0 parameters and a
120ms (0x78) delay. The third command is 0x29 with one parameter 0xaa and a 120ms delay (0x78). Multiple
byte literals (b””) are merged together on load. The parens are needed to allow byte literals on subsequent lines.

1.8. Full Table of Contents 129

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

The initialization sequence should always leave the display memory access inline with the scan of the display to
minimize tearing artifacts.

Parameters

• display_bus – The bus that the display is connected to

• init_sequence (ReadableBuffer) – Byte-packed initialization sequence.

• width (int) – Width in pixels

• height (int) – Height in pixels

• colstart (int) – The index if the first visible column

• rowstart (int) – The index if the first visible row

• rotation (int) – The rotation of the display in degrees clockwise. Must be in 90 degree
increments (0, 90, 180, 270)

• color_depth (int) – The number of bits of color per pixel transmitted. (Some displays
support 18 bit but 16 is easier to transmit. The last bit is extrapolated.)

• grayscale (bool) – True if the display only shows a single color.

• pixels_in_byte_share_row (bool) – True when pixels are less than a byte and a byte
includes pixels from the same row of the display. When False, pixels share a column.

• bytes_per_cell (int) – Number of bytes per addressable memory location when
color_depth < 8. When greater than one, bytes share a row or column according to pix-
els_in_byte_share_row.

• reverse_pixels_in_byte (bool) – Reverses the pixel order within each byte when
color_depth < 8. Does not apply across multiple bytes even if there is more than one byte
per cell (bytes_per_cell.)

• reverse_bytes_in_word (bool) – Reverses the order of bytes within a word when
color_depth == 16

• set_column_command (int) – Command used to set the start and end columns to update

• set_row_command (int) – Command used so set the start and end rows to update

• write_ram_command (int) – Command used to write pixels values into the update region.
Ignored if data_as_commands is set.

• backlight_pin (microcontroller.Pin) – Pin connected to the display’s backlight

• brightness_command (int) – Command to set display brightness. Usually available in
OLED controllers.

• brightness (float) – Initial display brightness. This value is ignored if auto_brightness
is True.

• auto_brightness (bool) – If True, brightness is controlled via an ambient light sensor or
other mechanism.

• single_byte_bounds (bool) – Display column and row commands use single bytes

• data_as_commands (bool) – Treat all init and boundary data as SPI commands. Certain
displays require this.

• auto_refresh (bool) – Automatically refresh the screen

• native_frames_per_second (int) – Number of display refreshes per second that occur
with the given init_sequence.

130 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

• backlight_on_high (bool) – If True, pulling the backlight pin high turns the backlight
on.

• SH1107_addressing (bool) – Special quirk for SH1107, use upper/lower column set and
page set

• set_vertical_scroll (int) – This parameter is accepted but ignored for backwards com-
patibility. It will be removed in a future release.

auto_refresh :bool

True when the display is refreshed automatically.

brightness :float

The brightness of the display as a float. 0.0 is off and 1.0 is full brightness. When auto_brightness is
True, the value of brightness will change automatically. If brightness is set, auto_brightness will
be disabled and will be set to False.

auto_brightness :bool

True when the display brightness is adjusted automatically, based on an ambient light sensor or other
method. Note that some displays may have this set to True by default, but not actually implement auto-
matic brightness adjustment. auto_brightness is set to False if brightness is set manually.

width :int

Gets the width of the board

height :int

Gets the height of the board

rotation :int

The rotation of the display as an int in degrees.

bus :_DisplayBus

The bus being used by the display

root_group :Group

The root group on the display.

show(group: Group)→ None
Switches to displaying the given group of layers. When group is None, the default CircuitPython terminal
will be shown.

Parameters
group (Group) – The group to show.

refresh(*, target_frames_per_second: Optional[int] = None, minimum_frames_per_second: int = 0)→
bool

When auto_refresh is off, and target_frames_per_second is not None this waits for the target frame
rate and then refreshes the display, returning True. If the call has taken too long since the last refresh call
for the given target frame rate, then the refresh returns False immediately without updating the screen to
hopefully help getting caught up.

If the time since the last successful refresh is below the minimum frame rate, then an exception will be
raised. The default minimum_frames_per_second of 0 disables this behavior.

When auto_refresh is off, and target_frames_per_second is None this will update the display imme-
diately.

When auto_refresh is on, updates the display immediately. (The display will also update without calls to
this.)

1.8. Full Table of Contents 131

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Parameters

• target_frames_per_second (Optional[int]) – The target frame rate that
refresh() should try to achieve. Set to None for immediate refresh.

• minimum_frames_per_second (int) – The minimum number of times the screen should
be updated per second.

fill_row(y: int, buffer: circuitpython_typing.WriteableBuffer)→ circuitpython_typing.WriteableBuffer
Extract the pixels from a single row

Parameters

• y (int) – The top edge of the area

• buffer (WriteableBuffer) – The buffer in which to place the pixel data

class displayio.EPaperDisplay(display_bus: _DisplayBus, start_sequence:
circuitpython_typing.ReadableBuffer, stop_sequence:
circuitpython_typing.ReadableBuffer, *, width: int, height: int, ram_width:
int, ram_height: int, colstart: int = 0, rowstart: int = 0, rotation: int = 0,
set_column_window_command: Optional[int] = None,
set_row_window_command: Optional[int] = None,
set_current_column_command: Optional[int] = None,
set_current_row_command: Optional[int] = None,
write_black_ram_command: int, black_bits_inverted: bool = False,
write_color_ram_command: Optional[int] = None, color_bits_inverted: bool
= False, highlight_color: int = 0, refresh_display_command: int,
refresh_time: float = 40, busy_pin: Optional[microcontroller.Pin] = None,
busy_state: bool = True, seconds_per_frame: float = 180,
always_toggle_chip_select: bool = False, grayscale: bool = False,
two_byte_sequence_length: bool = False)

Manage updating an epaper display over a display bus

This initializes an epaper display and connects it into CircuitPython. Unlike other objects in CircuitPython, EPa-
perDisplay objects live until displayio.release_displays() is called. This is done so that CircuitPython
can use the display itself.

Most people should not use this class directly. Use a specific display driver instead that will contain the startup
and shutdown sequences at minimum.

Create a EPaperDisplay object on the given display bus (displayio.FourWire or paralleldisplay.
ParallelBus).

The start_sequence and stop_sequence are bitpacked to minimize the ram impact. Every command begins
with a command byte followed by a byte to determine the parameter count and delay. When the top bit of the
second byte is 1 (0x80), a delay will occur after the command parameters are sent. The remaining 7 bits are the
parameter count excluding any delay byte. The bytes following are the parameters. When the delay bit is set, a
single byte after the parameters specifies the delay duration in milliseconds. The value 0xff will lead to an extra
long 500 ms delay instead of 255 ms. The next byte will begin a new command definition.

Parameters

• display_bus – The bus that the display is connected to

• start_sequence (ReadableBuffer) – Byte-packed initialization sequence.

• stop_sequence (ReadableBuffer) – Byte-packed initialization sequence.

• width (int) – Width in pixels

• height (int) – Height in pixels

132 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• ram_width (int) – RAM width in pixels

• ram_height (int) – RAM height in pixels

• colstart (int) – The index if the first visible column

• rowstart (int) – The index if the first visible row

• rotation (int) – The rotation of the display in degrees clockwise. Must be in 90 degree
increments (0, 90, 180, 270)

• set_column_window_command (int) – Command used to set the start and end columns to
update

• set_row_window_command (int) – Command used so set the start and end rows to update

• set_current_column_command (int) – Command used to set the current column location

• set_current_row_command (int) – Command used to set the current row location

• write_black_ram_command (int) – Command used to write pixels values into the update
region

• black_bits_inverted (bool) – True if 0 bits are used to show black pixels. Otherwise, 1
means to show black.

• write_color_ram_command (int) – Command used to write pixels values into the update
region

• color_bits_inverted (bool) – True if 0 bits are used to show the color. Otherwise, 1
means to show color.

• highlight_color (int) – RGB888 of source color to highlight with third ePaper color.

• refresh_display_command (int) – Command used to start a display refresh

• refresh_time (float) – Time it takes to refresh the display before the stop_sequence
should be sent. Ignored when busy_pin is provided.

• busy_pin (microcontroller.Pin) – Pin used to signify the display is busy

• busy_state (bool) – State of the busy pin when the display is busy

• seconds_per_frame (float) – Minimum number of seconds between screen refreshes

• always_toggle_chip_select (bool) – When True, chip select is toggled every byte

• grayscale (bool) – When true, the color ram is the low bit of 2-bit grayscale

• two_byte_sequence_length (bool) – When true, use two bytes to define sequence length

time_to_refresh :float

Time, in fractional seconds, until the ePaper display can be refreshed.

busy :bool

True when the display is refreshing. This uses the busy_pin when available or the refresh_time other-
wise.

width :int

Gets the width of the display in pixels

height :int

Gets the height of the display in pixels

1.8. Full Table of Contents 133

CircuitPython Documentation, Release 7.3.3

rotation :int

The rotation of the display as an int in degrees.

bus :_DisplayBus

The bus being used by the display

show(group: Group)→ None
Switches to displaying the given group of layers. When group is None, the default CircuitPython terminal
will be shown.

Parameters
group (Group) – The group to show.

update_refresh_mode(start_sequence: circuitpython_typing.ReadableBuffer, seconds_per_frame: float =
180)→ None

Updates the start_sequence and seconds_per_frame parameters to enable varying the refresh mode
of the display.

refresh()→ None
Refreshes the display immediately or raises an exception if too soon. Use time.sleep(display.
time_to_refresh) to sleep until a refresh can occur.

class displayio.FourWire(spi_bus: busio.SPI, *, command: Optional[microcontroller.Pin], chip_select:
microcontroller.Pin, reset: Optional[microcontroller.Pin] = None, baudrate: int =
24000000, polarity: int = 0, phase: int = 0)

Manage updating a display over SPI four wire protocol in the background while Python code runs. It doesn’t
handle display initialization.

Create a FourWire object associated with the given pins.

The SPI bus and pins are then in use by the display until displayio.release_displays() is called even after
a reload. (It does this so CircuitPython can use the display after your code is done.) So, the first time you initialize
a display bus in code.py you should call displayio.release_displays() first, otherwise it will error after
the first code.py run.

If the command pin is not specified, a 9-bit SPI mode will be simulated by adding a data/command bit to every
bit being transmitted, and splitting the resulting data back into 8-bit bytes for transmission. The extra bits that
this creates at the end are ignored by the receiving device.

Parameters

• spi_bus (busio.SPI) – The SPI bus that make up the clock and data lines

• command (microcontroller.Pin) – Data or command pin. When None, 9-bit SPI is sim-
ulated.

• chip_select (microcontroller.Pin) – Chip select pin

• reset (microcontroller.Pin) – Reset pin. When None only software reset can be used

• baudrate (int) – Maximum baudrate in Hz for the display on the bus

• polarity (int) – the base state of the clock line (0 or 1)

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising or
falling depends on clock polarity.

reset()→ None
Performs a hardware reset via the reset pin. Raises an exception if called when no reset pin is available.

134 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

send(command: int, data: circuitpython_typing.ReadableBuffer, *, toggle_every_byte: bool = False)→ None
Sends the given command value followed by the full set of data. Display state, such as vertical scroll, set
via send may or may not be reset once the code is done.

class displayio.Group(*, scale: int = 1, x: int = 0, y: int = 0)
Manage a group of sprites and groups and how they are inter-related.

Create a Group of a given size and scale. Scale is in one dimension. For example, scale=2 leads to a layer’s pixel
being 2x2 pixels when in the group.

Parameters

• scale (int) – Scale of layer pixels in one dimension.

• x (int) – Initial x position within the parent.

• y (int) – Initial y position within the parent.

hidden :bool

True when the Group and all of it’s layers are not visible. When False, the Group’s layers are visible if they
haven’t been hidden.

scale :int

Scales each pixel within the Group in both directions. For example, when scale=2 each pixel will be rep-
resented by 2x2 pixels.

x :int

X position of the Group in the parent.

y :int

Y position of the Group in the parent.

append(layer: Union[vectorio.Circle, vectorio.Rectangle, vectorio.Polygon, Group, TileGrid])→ None
Append a layer to the group. It will be drawn above other layers.

insert(index: int, layer: Union[vectorio.Circle, vectorio.Rectangle, vectorio.Polygon, Group, TileGrid])→
None

Insert a layer into the group.

index(layer: Union[vectorio.Circle, vectorio.Rectangle, vectorio.Polygon, Group, TileGrid])→ int
Returns the index of the first copy of layer. Raises ValueError if not found.

pop(i: int = -1)→ Union[vectorio.Circle, vectorio.Rectangle, vectorio.Polygon, Group, TileGrid]
Remove the ith item and return it.

remove(layer: Union[vectorio.Circle, vectorio.Rectangle, vectorio.Polygon, Group, TileGrid])→ None
Remove the first copy of layer. Raises ValueError if it is not present.

__bool__()→ bool

__len__()→ int
Returns the number of layers in a Group

__getitem__(index: int)→ Union[vectorio.Circle, vectorio.Rectangle, vectorio.Polygon, Group, TileGrid]
Returns the value at the given index.

This allows you to:

print(group[0])

1.8. Full Table of Contents 135

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

__setitem__(index: int, value: Union[vectorio.Circle, vectorio.Rectangle, vectorio.Polygon, Group,
TileGrid])→ None

Sets the value at the given index.

This allows you to:

group[0] = sprite

__delitem__(index: int)→ None
Deletes the value at the given index.

This allows you to:

del group[0]

sort(key: function, reverse: bool)→ None
Sort the members of the group.

class displayio.I2CDisplay(i2c_bus: busio.I2C, *, device_address: int, reset: Optional[microcontroller.Pin]
= None)

Manage updating a display over I2C in the background while Python code runs. It doesn’t handle display initial-
ization.

Create a I2CDisplay object associated with the given I2C bus and reset pin.

The I2C bus and pins are then in use by the display until displayio.release_displays() is called even after
a reload. (It does this so CircuitPython can use the display after your code is done.) So, the first time you initialize
a display bus in code.py you should call displayio.release_displays() first, otherwise it will error after
the first code.py run.

Parameters

• i2c_bus (busio.I2C) – The I2C bus that make up the clock and data lines

• device_address (int) – The I2C address of the device

• reset (microcontroller.Pin) – Reset pin. When None only software reset can be used

reset()→ None
Performs a hardware reset via the reset pin. Raises an exception if called when no reset pin is available.

send(command: int, data: circuitpython_typing.ReadableBuffer)→ None
Sends the given command value followed by the full set of data. Display state, such as vertical scroll, set
via send may or may not be reset once the code is done.

class displayio.OnDiskBitmap(file: Union[str, BinaryIO])
Loads values straight from disk. This minimizes memory use but can lead to much slower pixel load times.
These load times may result in frame tearing where only part of the image is visible.

It’s easiest to use on a board with a built in display such as the Hallowing M0 Express.

import board
import displayio
import time
import pulseio

board.DISPLAY.auto_brightness = False
board.DISPLAY.brightness = 0

(continues on next page)

136 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://www.adafruit.com/product/3900

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

splash = displayio.Group()
board.DISPLAY.show(splash)

odb = displayio.OnDiskBitmap('/sample.bmp')
face = displayio.TileGrid(odb, pixel_shader=odb.pixel_shader)
splash.append(face)
Wait for the image to load.
board.DISPLAY.refresh(target_frames_per_second=60)

Fade up the backlight
for i in range(100):

board.DISPLAY.brightness = 0.01 * i
time.sleep(0.05)

Wait forever
while True:

pass

Create an OnDiskBitmap object with the given file.

Parameters
file (file) – The name of the bitmap file. For backwards compatibility, a file opened in binary
mode may also be passed.

Older versions of CircuitPython required a file opened in binary mode. CircuitPython 7.0 modified
OnDiskBitmap so that it takes a filename instead, and opens the file internally. A future version of CircuitPython
will remove the ability to pass in an opened file.

width :int

Width of the bitmap. (read only)

height :int

Height of the bitmap. (read only)

pixel_shader :Union[ColorConverter, Palette]

The image’s pixel_shader. The type depends on the underlying bitmap’s structure. The pixel shader can be
modified (e.g., to set the transparent pixel or, for palette shaded images, to update the palette.)

class displayio.Palette(color_count: int)
Map a pixel palette_index to a full color. Colors are transformed to the display’s format internally to save memory.

Create a Palette object to store a set number of colors.

Parameters
color_count (int) – The number of colors in the Palette

__bool__()→ bool

__len__()→ int
Returns the number of colors in a Palette

__getitem__(index: int)→ Optional[int]
Return the pixel color at the given index as an integer.

__setitem__(index: int, value: Union[int, circuitpython_typing.ReadableBuffer, Tuple[int, int, int]])→
None

1.8. Full Table of Contents 137

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Sets the pixel color at the given index. The index should be an integer in the range 0 to color_count-1.

The value argument represents a color, and can be from 0x000000 to 0xFFFFFF (to represent an RGB
value). Value can be an int, bytes (3 bytes (RGB) or 4 bytes (RGB + pad byte)), bytearray, or a tuple or list
of 3 integers.

This allows you to:

palette[0] = 0xFFFFFF # set using an integer
palette[1] = b'\xff\xff\x00' # set using 3 bytes
palette[2] = b'\xff\xff\x00\x00' # set using 4 bytes
palette[3] = bytearray(b'\x00\x00\xFF') # set using a bytearay of 3 or 4 bytes
palette[4] = (10, 20, 30) # set using a tuple of 3 integers

make_transparent(palette_index: int)→ None

make_opaque(palette_index: int)→ None

is_transparent(palette_index: int)→ bool
Returns True if the palette index is transparent. Returns False if opaque.

class displayio.Shape(width: int, height: int, *, mirror_x: bool = False, mirror_y: bool = False)
Represents a shape made by defining boundaries that may be mirrored.

Create a Shape object with the given fixed size. Each pixel is one bit and is stored by the column boundaries of
the shape on each row. Each row’s boundary defaults to the full row.

Parameters

• width (int) – The number of pixels wide

• height (int) – The number of pixels high

• mirror_x (bool) – When true the left boundary is mirrored to the right.

• mirror_y (bool) – When true the top boundary is mirrored to the bottom.

set_boundary(y: int, start_x: int, end_x: int)→ None
Loads pre-packed data into the given row.

class displayio.TileGrid(bitmap: Union[Bitmap, OnDiskBitmap, Shape], *, pixel_shader:
Union[ColorConverter, Palette], width: int = 1, height: int = 1, tile_width:
Optional[int] = None, tile_height: Optional[int] = None, default_tile: int = 0, x: int
= 0, y: int = 0)

A grid of tiles sourced out of one bitmap

Position a grid of tiles sourced from a bitmap and pixel_shader combination. Multiple grids can share bitmaps
and pixel shaders.

A single tile grid is also known as a Sprite.

Create a TileGrid object. The bitmap is source for 2d pixels. The pixel_shader is used to convert the value and
its location to a display native pixel color. This may be a simple color palette lookup, a gradient, a pattern or a
color transformer.

To save RAM usage, tile values are only allowed in the range from 0 to 255 inclusive (single byte values).

tile_width and tile_height match the height of the bitmap by default.

Parameters

• bitmap (Bitmap,OnDiskBitmap,Shape) – The bitmap storing one or more tiles.

138 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• pixel_shader (ColorConverter,Palette) – The pixel shader that produces colors from
values

• width (int) – Width of the grid in tiles.

• height (int) – Height of the grid in tiles.

• tile_width (int) – Width of a single tile in pixels. Defaults to the full Bitmap and must
evenly divide into the Bitmap’s dimensions.

• tile_height (int) – Height of a single tile in pixels. Defaults to the full Bitmap and must
evenly divide into the Bitmap’s dimensions.

• default_tile (int) – Default tile index to show.

• x (int) – Initial x position of the left edge within the parent.

• y (int) – Initial y position of the top edge within the parent.

hidden :bool

True when the TileGrid is hidden. This may be False even when a part of a hidden Group.

x :int

X position of the left edge in the parent.

y :int

Y position of the top edge in the parent.

width :int

Width of the tilegrid in tiles.

height :int

Height of the tilegrid in tiles.

tile_width :int

Width of a single tile in pixels.

tile_height :int

Height of a single tile in pixels.

flip_x :bool

If true, the left edge rendered will be the right edge of the right-most tile.

flip_y :bool

If true, the top edge rendered will be the bottom edge of the bottom-most tile.

transpose_xy :bool

If true, the TileGrid’s axis will be swapped. When combined with mirroring, any 90 degree rotation can
be achieved along with the corresponding mirrored version.

pixel_shader :Union[ColorConverter, Palette]

The pixel shader of the tilegrid.

bitmap :Union[Bitmap, OnDiskBitmap, Shape]

The bitmap of the tilegrid.

__getitem__(index: Union[Tuple[int, int], int])→ int
Returns the tile index at the given index. The index can either be an x,y tuple or an int equal to y * width
+ x.

This allows you to:

1.8. Full Table of Contents 139

CircuitPython Documentation, Release 7.3.3

print(grid[0])

__setitem__(index: Union[Tuple[int, int], int], value: int)→ None
Sets the tile index at the given index. The index can either be an x,y tuple or an int equal to y * width +
x.

This allows you to:

grid[0] = 10

or:

grid[0,0] = 10

dualbank – DUALBANK Module

The dualbank module adds ability to update and switch between the two app partitions.

There are two identical partitions, these contain different firmware versions. Having two partitions enables rollback
functionality.

The two partitions are defined as boot partition and next-update partition. Calling dualbank.flash() writes the
next-update partition.

After the next-update partition is written a validation check is performed and on a successful validation this partition
is set as the boot partition. On next reset, firmware will be loaded from this partition.

Here is the sequence of commands to follow:

import dualbank

dualbank.flash(buffer, offset)
dualbank.switch()

dualbank.flash(*buffer: circuitpython_typing.ReadableBuffer, offset: int = 0)→ None
Writes one of two app partitions at the given offset.

This can be called multiple times when flashing the firmware in small chunks.

dualbank.switch()→ None
Switches the boot partition.

On next reset, firmware will be loaded from the partition just switched over to.

espidf

Direct access to a few ESP-IDF details. This module should not include any functionality that could be implemented
by other frameworks. It should only include ESP-IDF specific things.

espidf.heap_caps_get_total_size()→ int
Return the total size of the ESP-IDF, which includes the CircuitPython heap.

espidf.heap_caps_get_free_size()→ int
Return total free memory in the ESP-IDF heap.

140 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

espidf.heap_caps_get_largest_free_block()→ int
Return the size of largest free memory block in the ESP-IDF heap.

espidf.erase_nvs()→ None
Erase all data in the non-volatile storage (nvs), including data stored by with microcontroller.nvm

This is necessary when upgrading from CircuitPython 6.3.0 or earlier to CircuitPython 7.0.0, because the layout
of data in nvs has changed. The old data will be lost when you perform this operation.

exception espidf.MemoryError

Bases: MemoryError

Raised when an ESP IDF memory allocation fails.

Initialize self. See help(type(self)) for accurate signature.

floppyio – Read flux transition information into the buffer.

floppyio.flux_readinto(buffer: circuitpython_typing.WriteableBuffer, data: digitalio.DigitalInOut, index:
digitalio.DigitalInOut)→ int

The function returns when the buffer has filled, or when the index input indicates that one full revolution of data
has been recorded. Due to technical limitations, this process may not be interruptible by KeyboardInterrupt.

Parameters

• buffer – Read data into this buffer. Each element represents the time between successive
zero-to-one transitions.

• data – Pin on which the flux data appears

• index – Pin on which the index pulse appears

Returns
The actual number of bytes of read

floppyio.mfm_readinto(buffer: circuitpython_typing.WriteableBuffer, data: digitalio.DigitalInOut, index:
digitalio.DigitalInOut)→ int

Read mfm blocks into the buffer.

The track is assumed to consist of 512-byte sectors.

The function returns when all sectors have been successfully read, or a number of index pulses have occurred.
Due to technical limitations, this process may not be interruptible by KeyboardInterrupt.

Parameters

• buffer – Read data into this buffer. Must be a multiple of 512.

• data – Pin on which the mfm data appears

• index – Pin on which the index pulse appears

Returns
The actual number of sectors read

floppyio.samplerate :int

The approximate sample rate in Hz used by flux_readinto.

1.8. Full Table of Contents 141

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

fontio – Core font related data structures

Note: This module is intended only for low-level usage. For working with fonts in CircuitPython see the
adafruit_bitmap_font library. For information on creating custom fonts for use in CircuitPython, see this Learn guide

class fontio.FontProtocol

Bases: typing_extensions.Protocol

A protocol shared by BuiltinFont and classes in adafruit_bitmap_font

get_bounding_box()→ Union[Tuple[int, int], Tuple[int, int, int, int]]
Retrieve the maximum bounding box of any glyph in the font.

The four element version is (width, height, x_offset, y_offset). The two element version is
(width, height), in which x_offset and y_offset are assumed to be zero.

get_glyph(codepoint: int)→ Optional[Glyph]
Retrieve the Glyph for a given code point

If the code point is not present in the font, None is returned.

class fontio.BuiltinFont

A font built into CircuitPython

Creation not supported. Available fonts are defined when CircuitPython is built. See the
Adafruit_CircuitPython_Bitmap_Font library for dynamically loaded fonts.

bitmap :displayio.Bitmap

Bitmap containing all font glyphs starting with ASCII and followed by unicode. Use get_glyph in most
cases. This is useful for use with displayio.TileGrid and terminalio.Terminal.

get_bounding_box()→ Tuple[int, int]
Returns the maximum bounds of all glyphs in the font in a tuple of two values: width, height.

get_glyph(codepoint: int)→ Glyph
Returns a fontio.Glyph for the given codepoint or None if no glyph is available.

class fontio.Glyph(bitmap: displayio.Bitmap, tile_index: int, width: int, height: int, dx: int, dy: int, shift_x: int,
shift_y: int)

Storage of glyph info

Named tuple used to capture a single glyph and its attributes.

Parameters

• bitmap – the bitmap including the glyph

• tile_index – the tile index within the bitmap

• width – the width of the glyph’s bitmap

• height – the height of the glyph’s bitmap

• dx – x adjustment to the bitmap’s position

• dy – y adjustment to the bitmap’s position

• shift_x – the x difference to the next glyph

• shift_y – the y difference to the next glyph

142 Chapter 1. CircuitPython

https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display
https://docs.python.org/3/library/constants.html#None
https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font

CircuitPython Documentation, Release 7.3.3

framebufferio – Native framebuffer display driving

The framebufferio module contains classes to manage display output including synchronizing with refresh rates and
partial updating. It is used in conjunction with classes from displayio to actually place items on the display; and
classes like RGBMatrix to actually drive the display.

class framebufferio.FramebufferDisplay(framebuffer: circuitpython_typing.FrameBuffer, *, rotation: int =
0, auto_refresh: bool = True)

Manage updating a display with framebuffer in RAM

This initializes a display and connects it into CircuitPython. Unlike other objects in CircuitPython, Display
objects live until displayio.release_displays() is called. This is done so that CircuitPython can use the
display itself.

Create a Display object with the given framebuffer (a buffer, array, ulab.array, etc)

Parameters

• framebuffer (FrameBuffer) – The framebuffer that the display is connected to

• auto_refresh (bool) – Automatically refresh the screen

• rotation (int) – The rotation of the display in degrees clockwise. Must be in 90 degree
increments (0, 90, 180, 270)

auto_refresh :bool

True when the display is refreshed automatically.

brightness :float

The brightness of the display as a float. 0.0 is off and 1.0 is full brightness. When auto_brightness is
True, the value of brightness will change automatically. If brightness is set, auto_brightness will
be disabled and will be set to False.

auto_brightness :bool

True when the display brightness is adjusted automatically, based on an ambient light sensor or other
method. Note that some displays may have this set to True by default, but not actually implement auto-
matic brightness adjustment. auto_brightness is set to False if brightness is set manually.

width :int

Gets the width of the framebuffer

height :int

Gets the height of the framebuffer

rotation :int

The rotation of the display as an int in degrees.

framebuffer :circuitpython_typing.FrameBuffer

The framebuffer being used by the display

show(group: displayio.Group)→ None
Switches to displaying the given group of layers. When group is None, the default CircuitPython terminal
will be shown.

Parameters
group (Group) – The group to show.

1.8. Full Table of Contents 143

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

refresh(*, target_frames_per_second: int = 60, minimum_frames_per_second: int = 1)→ bool
When auto refresh is off, waits for the target frame rate and then refreshes the display, returning True. If
the call has taken too long since the last refresh call for the given target frame rate, then the refresh returns
False immediately without updating the screen to hopefully help getting caught up.

If the time since the last successful refresh is below the minimum frame rate, then an exception will be
raised. Set minimum_frames_per_second to 0 to disable.

When auto refresh is on, updates the display immediately. (The display will also update without calls to
this.)

Parameters

• target_frames_per_second (int) – How many times a second refresh should be
called and the screen updated.

• minimum_frames_per_second (int) – The minimum number of times the screen should
be updated per second.

fill_row(y: int, buffer: circuitpython_typing.WriteableBuffer)→ circuitpython_typing.WriteableBuffer
Extract the pixels from a single row

Parameters

• y (int) – The top edge of the area

• buffer (WriteableBuffer) – The buffer in which to place the pixel data

frequencyio – Support for frequency based protocols

Warning: This module is not available in SAMD21 builds. See the Module Support Matrix - Which Modules Are
Available on Which Boards for more info.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import time
import frequencyio
import board

frequency = frequencyio.FrequencyIn(board.D11)
frequency.capture_period = 15
time.sleep(0.1)

This example will initialize the the device, set capture_period , and then sleep 0.1 seconds. CircuitPython will
automatically turn off FrequencyIn capture when it resets all hardware after program completion. Use deinit() or a
with statement to do it yourself.

class frequencyio.FrequencyIn(pin: microcontroller.Pin, capture_period: int = 10)
Read a frequency signal

FrequencyIn is used to measure the frequency, in hertz, of a digital signal on an incoming pin. Accuracy has
shown to be within 10%, if not better. It is recommended to utilize an average of multiple samples to smooth out
readings.

144 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Frequencies below 1KHz are not currently detectable.

FrequencyIn will not determine pulse width (use PulseIn).

Create a FrequencyIn object associated with the given pin.

Parameters

• pin (Pin) – Pin to read frequency from.

• capture_period (int) – Keyword argument to set the measurement period, in millisec-
onds. Default is 10ms; range is 1ms - 500ms.

Read the incoming frequency from a pin:

import frequencyio
import board

frequency = frequencyio.FrequencyIn(board.D11)

Loop while printing the detected frequency
while True:

print(frequency.value)

Optional clear() will reset the value
to zero. Without this, if the incoming
signal stops, the last reading will remain
as the value.
frequency.clear()

capture_period :int

The capture measurement period. Lower incoming frequencies will be measured more accurately with
longer capture periods. Higher frequencies are more accurate with shorter capture periods.

Note: When setting a new capture_period, all previous capture information is cleared with a call to
clear().

deinit()→ None
Deinitialises the FrequencyIn and releases any hardware resources for reuse.

__enter__()→ FrequencyIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

pause()→ None
Pause frequency capture.

resume()→ None
Resumes frequency capture.

clear()→ None
Clears the last detected frequency capture value.

__get__(index: int)→ int
Returns the value of the last frequency captured.

1.8. Full Table of Contents 145

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

gamepadshift – Tracks button presses read through a shift register.

Note: gamepadshift is deprecated in CircuitPython 7.0.0 and will be removed in 8.0.0. Use keypad instead.

class gamepadshift.GamePadShift(clock: digitalio.DigitalInOut, data: digitalio.DigitalInOut, latch:
digitalio.DigitalInOut)

Scan buttons for presses through a shift register

Initializes button scanning routines.

The clock, data and latch parameters are DigitalInOut objects connected to the shift register controlling
the buttons.

The button presses are accumulated, until the get_pressed method is called, at which point the button state is
cleared, and the new button presses start to be recorded.

Only one gamepadshift.GamePadShift may be used at a time.

get_pressed()→ int
Get the status of buttons pressed since the last call and clear it.

Returns an 8-bit number, with bits that correspond to buttons, which have been pressed (or held down)
since the last call to this function set to 1, and the remaining bits set to 0. Then it clears the button state, so
that new button presses (or buttons that are held down) can be recorded for the next call.

deinit()→ None
Disable button scanning.

getpass – Getpass Module

This module provides a way to get input from user without echoing it.

getpass.getpass(prompt: Optional[str] = 'Password: ', stream: Optional[io.FileIO] = None)→ str
Prompt the user without echoing.

Parameters

• prompt (str) – The user is prompted using the string prompt, which defaults to
'Password: '.

• stream (io.FileIO) – The prompt is written to the file-like object stream if provided.

gifio – Access GIF-format images

class gifio.GifWriter(file: Union[BinaryIO, str], width: int, height: int, colorspace: displayio.Colorspace,
loop: bool = True, dither: bool = False)

Construct a GifWriter object

Parameters

• file – Either a file open in bytes mode, or the name of a file to open in bytes mode.

• width – The width of the image. All frames must have the same width.

• height – The height of the image. All frames must have the same height.

146 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• colorspace – The colorspace of the image. All frames must have the same colorspace. The
supported colorspaces are RGB565, BGR565, RGB565_SWAPPED, BGR565_SWAPPED, and L8
(greyscale)

• loop – If True, the GIF is marked for looping playback

• dither – If True, and the image is in color, a simple ordered dither is applied.

__enter__()→ GifWriter
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

deinit()→ None
Close the underlying file.

add_frame(bitmap: circuitpython_typing.ReadableBuffer, delay: float = 0.1)→ None
Add a frame to the GIF.

Parameters

• bitmap – The frame data

• delay – The frame delay in seconds. The GIF format rounds this to the nearest 1/100
second, and the largest permitted value is 655 seconds.

gnss – Global Navigation Satellite System

The gnss module contains classes to control the GNSS and acquire positioning information.

class gnss.GNSS(system: Union[SatelliteSystem, List[SatelliteSystem]])
Get updated positioning information from Global Navigation Satellite System (GNSS)

Usage:

import gnss
import time

nav = gnss.GNSS([gnss.SatelliteSystem.GPS, gnss.SatelliteSystem.GLONASS])
last_print = time.monotonic()
while True:

nav.update()
current = time.monotonic()
if current - last_print >= 1.0:

last_print = current
if nav.fix is gnss.PositionFix.INVALID:

print("Waiting for fix...")
continue

print("Latitude: {0:.6f} degrees".format(nav.latitude))
print("Longitude: {0:.6f} degrees".format(nav.longitude))

Turn on the GNSS.

Parameters
system – satellite system to use

1.8. Full Table of Contents 147

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

latitude :float

Latitude of current position in degrees (float).

longitude :float

Longitude of current position in degrees (float).

altitude :float

Altitude of current position in meters (float).

timestamp :time.struct_time

Time when the position data was updated.

fix :PositionFix

Fix mode.

deinit()→ None
Turn off the GNSS.

update()→ None
Update GNSS positioning information.

class gnss.PositionFix

Position fix mode

Enum-like class to define the position fix mode.

INVALID :PositionFix

No measurement.

FIX_2D :PositionFix

2D fix.

FIX_3D :PositionFix

3D fix.

class gnss.SatelliteSystem

Satellite system type

Enum-like class to define the satellite system type.

GPS :SatelliteSystem

Global Positioning System.

GLONASS :SatelliteSystem

GLObal NAvigation Satellite System.

SBAS :SatelliteSystem

Satellite Based Augmentation System.

QZSS_L1CA :SatelliteSystem

Quasi-Zenith Satellite System L1C/A.

QZSS_L1S :SatelliteSystem

Quasi-Zenith Satellite System L1S.

148 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

i2cperipheral – Two wire serial protocol peripheral

The i2cperipheral module contains classes to support an I2C peripheral.

Example emulating a peripheral with 2 addresses (read and write):

import board
from i2cperipheral import I2CPeripheral

regs = [0] * 16
index = 0

with I2CPeripheral(board.SCL, board.SDA, (0x40, 0x41)) as device:
while True:

r = device.request()
if not r:

Maybe do some housekeeping
continue

with r: # Closes the transfer if necessary by sending a NACK or feeding dummy␣
→˓bytes

if r.address == 0x40:
if not r.is_read: # Main write which is Selected read

b = r.read(1)
if not b or b[0] > 15:

break
index = b[0]
b = r.read(1)
if b:

regs[index] = b[0]
elif r.is_restart: # Combined transfer: This is the Main read message

n = r.write(bytes([regs[index]]))
#else:

A read transfer is not supported in this example
If the microcontroller tries, it will get 0xff byte(s) by the ctx␣

→˓manager (r.close())
elif r.address == 0x41:

if not r.is_read:
b = r.read(1)
if b and b[0] == 0xde:

do something
pass

This example sets up an I2C device that can be accessed from Linux like this:

$ i2cget -y 1 0x40 0x01
0x00
$ i2cset -y 1 0x40 0x01 0xaa
$ i2cget -y 1 0x40 0x01
0xaa

Warning: I2CPeripheral makes use of clock stretching in order to slow down the host. Make sure the I2C host
supports this.

1.8. Full Table of Contents 149

CircuitPython Documentation, Release 7.3.3

Raspberry Pi in particular does not support this with its I2C hw block. This can be worked around by using the
i2c-gpio bit banging driver. Since the RPi firmware uses the hw i2c, it’s not possible to emulate a HAT eeprom.

class i2cperipheral.I2CPeripheral(scl: microcontroller.Pin, sda: microcontroller.Pin, addresses:
Sequence[int], smbus: bool = False)

Two wire serial protocol peripheral

I2C is a two-wire protocol for communicating between devices. This implements the peripheral (sensor, sec-
ondary) side.

Parameters

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• addresses (list[int]) – The I2C addresses to respond to (how many is hw dependent).

• smbus (bool) – Use SMBUS timings if the hardware supports it

deinit()→ None
Releases control of the underlying hardware so other classes can use it.

__enter__()→ I2CPeripheral
No-op used in Context Managers.

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

request(timeout: float = -1)→ I2CPeripheralRequest
Wait for an I2C request.

Parameters
timeout (float) – Timeout in seconds. Zero means wait forever, a negative value means
check once

Returns
I2C Slave Request or None if timeout=-1 and there’s no request

Return type
I2CPeripheralRequest

class i2cperipheral.I2CPeripheralRequest(peripheral: I2CPeripheral, address: int, is_read: bool,
is_restart: bool)

Information about an I2C transfer request This cannot be instantiated directly, but is returned by
I2CPeripheral.request().

Parameters

• peripheral – The I2CPeripheral object receiving this request

• address – I2C address

• is_read – True if the main peripheral is requesting data

• is_restart – Repeated Start Condition

address :int

The I2C address of the request.

150 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

is_read :bool

The I2C main controller is reading from this peripheral.

is_restart :bool

Is Repeated Start Condition.

__enter__()→ I2CPeripheralRequest
No-op used in Context Managers.

__exit__()→ None
Close the request.

read(n: int = -1, ack: bool = True)→ bytearray
Read data. If ack=False, the caller is responsible for calling I2CPeripheralRequest.ack().

Parameters

• n – Number of bytes to read (negative means all)

• ack – Whether or not to send an ACK after the n’th byte

Returns
Bytes read

write(buffer: circuitpython_typing.ReadableBuffer)→ int
Write the data contained in buffer.

Parameters
buffer (ReadableBuffer) – Write out the data in this buffer

Returns
Number of bytes written

ack(ack: bool = True)→ None
Acknowledge or Not Acknowledge last byte received. Use together with I2CPeripheralRequest.
read() ack=False.

Parameters
ack – Whether to send an ACK or NACK

imagecapture – Support for “Parallel capture” interfaces

class imagecapture.ParallelImageCapture(*, data_pins: List[microcontroller.Pin], clock:
microcontroller.Pin, vsync: Optional[microcontroller.Pin], href:
Optional[microcontroller.Pin])

Capture image frames from a camera with parallel data interface

Create a parallel image capture object

Parameters

• data_pins (List[microcontroller.Pin]) – The data pins.

• clock (microcontroller.Pin) – The pixel clock input.

• vsync (microcontroller.Pin) – The vertical sync input, which has a negative-going
pulse at the beginning of each frame.

• href (microcontroller.Pin) – The horizontal reference input, which is high whenever
the camera is transmitting valid pixel information.

1.8. Full Table of Contents 151

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

capture(buffer: circuitpython_typing.WriteableBuffer)→ circuitpython_typing.WriteableBuffer
Capture a single frame into the given buffer.

This will stop a continuous-mode capture, if one is in progress.

continuous_capture_start(buffer1: circuitpython_typing.WriteableBuffer, buffer2:
circuitpython_typing.WriteableBuffer, /)→ None

Begin capturing into the given buffers in the background.

Call continuous_capture_get_frame to get the next available frame, and
continuous_capture_stop to stop capturing.

Until continuous_capture_stop (or deinit) is called, the ParallelImageCapture object keeps ref-
erences to buffer1 and buffer2, so the objects will not be garbage collected.

continuous_capture_get_frame()→ circuitpython_typing.WriteableBuffer
Return the next available frame, one of the two buffers passed to continuous_capture_start

continuous_capture_stop()→ None
Stop continuous capture.

Calling this method also causes the object to release its references to the buffers passed to
continuous_capture_start, potentially allowing the objects to be garbage collected.

deinit()→ None
Deinitialize this instance

__enter__()→ ParallelImageCapture
No-op used in Context Managers.

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

ipaddress

The ipaddress module provides types for IP addresses. It is a subset of CPython’s ipaddress module.

ipaddress.ip_address(obj: Union[int, str])→ IPv4Address
Return a corresponding IP address object or raise ValueError if not possible.

class ipaddress.IPv4Address(address: Union[int, str, bytes])
Encapsulates an IPv4 address.

Create a new IPv4Address object encapsulating the address value.

The value itself can either be bytes or a string formatted address.

packed :bytes

The bytes that make up the address (read-only).

version :int

4 for IPv4, 6 for IPv6

__eq__(other: object)→ bool
Two Address objects are equal if their addresses and address types are equal.

__hash__()→ int
Returns a hash for the IPv4Address data.

152 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

is31fl3741 – Creates an in-memory framebuffer for a IS31FL3741 device.

class is31fl3741.IS31FL3741_FrameBuffer(is31: IS31FL3741, width: int, height: int, mapping: Tuple[int,
Ellipsis], *, framebuffer:
Optional[circuitpython_typing.WriteableBuffer] = None, scale:
bool = False, gamma: bool = False)

Create a IS31FL3741_FrameBuffer object with the given attributes.

The framebuffer is in “RGB888” format using 4 bytes per pixel. Bits 24-31 are ignored. The format is in RGB
order.

If a framebuffer is not passed in, one is allocated and initialized to all black. In any case, the framebuffer can be
retrieved by passing the Is31fl3741 object to memoryview().

A Is31fl3741 is often used in conjunction with a framebufferio.FramebufferDisplay.

Parameters

• is31 (is31fl3741.IS31FL3741) – base IS31FL3741 instance to drive the framebuffer

• width (int) – width of the display

• height (int) – height of the display

• mapping (Tuple[int, ...]) – mapping of matrix locations to LEDs

• framebuffer (Optional[WriteableBuffer]) – Optional buffer to hold the display

• scale (bool) – if True display is scaled down by 3 when displayed

• gamma (bool) – if True apply gamma correction to all LEDs

brightness :float

In the current implementation, 0.0 turns the display off entirely and any other value up to 1.0 turns the
display on fully.

width :int

The width of the display, in pixels

height :int

The height of the display, in pixels

deinit()→ None
Free the resources associated with this IS31FL3741 instance. After deinitialization, no further operations
may be performed.

refresh()→ None
Transmits the color data in the buffer to the pixels so that they are shown.

class is31fl3741.IS31FL3741(i2c: busio.I2C, *, addr: int = 48)
Driver for an IS31FL3741 device.

Create a IS31FL3741 object with the given attributes.

Designed to work low level or passed to and object such as IS31FL3741_FrameBuffer.

Parameters

• i2c (I2C) – I2C bus the IS31FL3741 is on

• addr (int) – device address

1.8. Full Table of Contents 153

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

deinit()→ None
Free the resources associated with this IS31FL3741 instance. After deinitialization, no further operations
may be performed.

is31fl3741.reset(self)→ None
Resets the IS31FL3741 chip.

is31fl3741.enable(self)→ None
Enables the IS31FL3741 chip.

is31fl3741.set_global_current(self, current: int)→ None
Sets the global current of the IS31FL3741 chip.

Parameters
current (int) – global current value 0x00 to 0xFF

is31fl3741.set_led(self, led: int, value: int, page: int)→ None
Resets the IS31FL3741 chip.

Parameters

• led (int) – which LED to set

• value (int) – value to set the LED to 0x00 to 0xFF

• page (int) – page to write to 0 or 2. If the LED is a >= 180 the routine will automatically
write to page 1 or 3 (instead of 0 or 2)

is31fl3741.write(mapping: Tuple[int, Ellipsis], buf: circuitpython_typing.ReadableBuffer)→ None
Write buf out on the I2C bus to the IS31FL3741.

Parameters

• mapping (~Tuple[int, ...]) – map the pixels in the buffer to the order addressed by the
driver chip

• buf (ReadableBuffer) – The bytes to clock out. No assumption is made about color order

keypad – Support for scanning keys and key matrices

The keypad module provides native support to scan sets of keys or buttons, connected independently to individual
pins, connected to a shift register, or connected in a row-and-column matrix.

class keypad.Event(key_number: int = 0, pressed: bool = True, timestamp: Optional[int] = None)
A key transition event.

Create a key transition event, which reports a key-pressed or key-released transition.

Parameters

• key_number (int) – The key number.

• pressed (bool) – True if the key was pressed; False if it was released.

• timestamp (int) – The time in milliseconds that the keypress occurred in the supervisor.
ticks_ms time system. If specified as None, the current value of supervisor.ticks_ms
is used.

key_number :int

The key number.

154 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

pressed :bool

True if the event represents a key down (pressed) transition. The opposite of released .

released :bool

True if the event represents a key up (released) transition. The opposite of pressed .

timestamp :int

The timestamp.

__eq__(other: object)→ bool
Two Event objects are equal if their key_number and pressed /released values are equal. Note that
this does not compare the event timestamps.

__hash__()→ int
Returns a hash for the Event, so it can be used in dictionaries, etc..

Note that as events with different timestamps compare equal, they also hash to the same value.

class keypad.EventQueue

A queue of Event objects, filled by a keypad scanner such as Keys or KeyMatrix.

You cannot create an instance of EventQueue directly. Each scanner creates an instance when it is created.

overflowed :bool

True if an event could not be added to the event queue because it was full. (read-only) Set to False by
clear().

get()→ Optional[Event]
Return the next key transition event. Return None if no events are pending.

Note that the queue size is limited; see max_events in the constructor of a scanner such as Keys or
KeyMatrix. If a new event arrives when the queue is full, the event is discarded, and overflowed is
set to True.

Returns
The next queued key transition Event.

Return type
Optional[Event]

get_into(event: Event)→ bool
Store the next key transition event in the supplied event, if available, and return True. If there are no queued
events, do not touch event and return False.

The advantage of this method over get() is that it does not allocate storage. Instead you can reuse an
existing Event object.

Note that the queue size is limited; see max_events in the constructor of a scanner such as Keys or
KeyMatrix.

Returns
True if an event was available and stored, False if not.

Return type
bool

clear()→ None
Clear any queued key transition events. Also sets overflowed to False.

1.8. Full Table of Contents 155

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

__bool__()→ bool
True if len() is greater than zero. This is an easy way to check if the queue is empty.

__len__()→ int
Return the number of events currently in the queue. Used to implement len().

class keypad.KeyMatrix(row_pins: Sequence[microcontroller.Pin], column_pins:
Sequence[microcontroller.Pin], columns_to_anodes: bool = True, interval: float =
0.02, max_events: int = 64)

Manage a 2D matrix of keys with row and column pins.

Create a Keys object that will scan the key matrix attached to the given row and column pins. There should not
be any external pull-ups or pull-downs on the matrix: KeyMatrix enables internal pull-ups or pull-downs on the
pins as necessary.

The keys are numbered sequentially from zero. A key number can be computed by row * len(column_pins)
+ column.

An EventQueue is created when this object is created and is available in the events attribute.

Parameters

• row_pins (Sequence[microcontroller.Pin]) – The pins attached to the rows.

• column_pins (Sequence[microcontroller.Pin]) – The pins attached to the colums.

• columns_to_anodes (bool) – Default True. If the matrix uses diodes, the diode anodes
are typically connected to the column pins, and the cathodes should be connected to the row
pins. If your diodes are reversed, set columns_to_anodes to False.

• interval (float) – Scan keys no more often than interval to allow for debouncing.
interval is in float seconds. The default is 0.020 (20 msecs).

• max_events (int) – maximum size of events EventQueue: maximum number of key
transition events that are saved. Must be >= 1. If a new event arrives when the queue is full,
the oldest event is discarded.

key_count :int

The number of keys that are being scanned. (read-only)

events :EventQueue

The EventQueue associated with this Keys object. (read-only)

deinit()→ None
Stop scanning and release the pins.

__enter__()→ KeyMatrix
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes when exiting a context. See Lifetime and ContextManagers for more info.

reset()→ None
Reset the internal state of the scanner to assume that all keys are now released. Any key that is already
pressed at the time of this call will therefore immediately cause a new key-pressed event to occur.

key_number_to_row_column(key_number: int)→ Tuple[int]
Return the row and column for the given key number. The row is key_number // len(column_pins).
The column is key_number % len(column_pins).

156 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Returns
(row, column)

Return type
Tuple[int]

row_column_to_key_number(row: int, column: int)→ int
Return the key number for a given row and column. The key number is row * len(column_pins) +
column.

class keypad.Keys(pins: Sequence[microcontroller.Pin], *, value_when_pressed: bool, pull: bool = True,
interval: float = 0.02, max_events: int = 64)

Manage a set of independent keys.

Create a Keys object that will scan keys attached to the given sequence of pins. Each key is independent and
attached to its own pin.

An EventQueue is created when this object is created and is available in the events attribute.

Parameters

• pins (Sequence[microcontroller.Pin]) – The pins attached to the keys. The key num-
bers correspond to indices into this sequence.

• value_when_pressed (bool) – True if the pin reads high when the key is pressed. False
if the pin reads low (is grounded) when the key is pressed. All the pins must be connected
in the same way.

• pull (bool) – True if an internal pull-up or pull-down should be enabled on each pin. A
pull-up will be used if value_when_pressed is False; a pull-down will be used if it is
True. If an external pull is already provided for all the pins, you can set pull to False.
However, enabling an internal pull when an external one is already present is not a problem;
it simply uses slightly more current.

• interval (float) – Scan keys no more often than interval to allow for debouncing.
interval is in float seconds. The default is 0.020 (20 msecs).

• max_events (int) – maximum size of events EventQueue: maximum number of key
transition events that are saved. Must be >= 1. If a new event arrives when the queue is full,
the oldest event is discarded.

key_count :int

The number of keys that are being scanned. (read-only)

events :EventQueue

The EventQueue associated with this Keys object. (read-only)

deinit()→ None
Stop scanning and release the pins.

__enter__()→ Keys
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes when exiting a context. See Lifetime and ContextManagers for more info.

reset()→ None
Reset the internal state of the scanner to assume that all keys are now released. Any key that is already
pressed at the time of this call will therefore immediately cause a new key-pressed event to occur.

1.8. Full Table of Contents 157

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

class keypad.ShiftRegisterKeys(*, clock: microcontroller.Pin, data: microcontroller.Pin, latch:
microcontroller.Pin, value_to_latch: bool = True, key_count: int,
value_when_pressed: bool, interval: float = 0.02, max_events: int = 64)

Manage a set of keys attached to an incoming shift register.

Create a Keys object that will scan keys attached to a parallel-in serial-out shift register like the 74HC165 or
CD4021. Note that you may chain shift registers to load in as many values as you need.

Key number 0 is the first (or more properly, the zero-th) bit read. In the 74HC165, this bit is labeled Q7. Key
number 1 will be the value of Q6, etc.

An EventQueue is created when this object is created and is available in the events attribute.

Parameters

• clock (microcontroller.Pin) – The shift register clock pin. The shift register should
clock on a low-to-high transition.

• data (microcontroller.Pin) – the incoming shift register data pin

• latch (microcontroller.Pin) – Pin used to latch parallel data going into the shift register.

• value_to_latch (bool) – Pin state to latch data being read. True if the data is latched
when latch goes high False if the data is latched when latch goes low. The default is
True, which is how the 74HC165 operates. The CD4021 latch is the opposite. Once the
data is latched, it will be shifted out by toggling the clock pin.

• key_count (int) – number of data lines to clock in

• value_when_pressed (bool) – True if the pin reads high when the key is pressed. False
if the pin reads low (is grounded) when the key is pressed.

• interval (float) – Scan keys no more often than interval to allow for debouncing.
interval is in float seconds. The default is 0.020 (20 msecs).

• max_events (int) – maximum size of events EventQueue: maximum number of key
transition events that are saved. Must be >= 1. If a new event arrives when the queue is full,
the oldest event is discarded.

key_count :int

The number of keys that are being scanned. (read-only)

events :EventQueue

The EventQueue associated with this Keys object. (read-only)

deinit()→ None
Stop scanning and release the pins.

__enter__()→ Keys
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes when exiting a context. See Lifetime and ContextManagers for more info.

reset()→ None
Reset the internal state of the scanner to assume that all keys are now released. Any key that is already
pressed at the time of this call will therefore immediately cause a new key-pressed event to occur.

158 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

math – mathematical functions

The math module provides some basic mathematical functions for working with floating-point numbers.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: math.

math.e :float

base of the natural logarithm

math.pi :float

the ratio of a circle’s circumference to its diameter

math.acos(x: float)→ float
Return the inverse cosine of x.

math.asin(x: float)→ float
Return the inverse sine of x.

math.atan(x: float)→ float
Return the inverse tangent of x.

math.atan2(y: float, x: float)→ float
Return the principal value of the inverse tangent of y/x.

math.ceil(x: float)→ int
Return an integer, being x rounded towards positive infinity.

math.copysign(x: float, y: float)→ float
Return x with the sign of y.

math.cos(x: float)→ float
Return the cosine of x.

math.degrees(x: float)→ float
Return radians x converted to degrees.

math.exp(x: float)→ float
Return the exponential of x.

math.fabs(x: float)→ float
Return the absolute value of x.

math.floor(x: float)→ int
Return an integer, being x rounded towards negative infinity.

math.fmod(x: float, y: float)→ int
Return the remainder of x/y.

math.frexp(x: float)→ Tuple[int, int]
Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e)
such that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation 0.5
<= abs(m) < 1 holds.

math.isfinite(x: float)→ bool
Return True if x is finite.

1.8. Full Table of Contents 159

https://docs.python.org/3/library/math.html#module-math

CircuitPython Documentation, Release 7.3.3

math.isinf(x: float)→ bool
Return True if x is infinite.

math.isnan(x: float)→ bool
Return True if x is not-a-number

math.ldexp(x: float, exp: float)→ float
Return x * (2**exp).

math.log(x: float, base: float = e)→ float
Return the logarithm of x to the given base. If base is not specified, returns the natural logarithm (base e) of x

math.modf(x: float)→ Tuple[float, float]
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the same sign
as x.

math.pow(x: float, y: float)→ float
Returns x to the power of y.

math.radians(x: float)→ float
Return degrees x converted to radians.

math.sin(x: float)→ float
Return the sine of x.

math.sqrt(x: float)→ float
Returns the square root of x.

math.tan(x: float)→ float
Return the tangent of x.

math.trunc(x: float)→ int
Return an integer, being x rounded towards 0.

math.expm1(x: float)→ float
Return exp(x) - 1.

May not be available on some boards.

math.log2(x: float)→ float
Return the base-2 logarithm of x.

May not be available on some boards.

math.log10(x: float)→ float
Return the base-10 logarithm of x.

May not be available on some boards.

math.cosh(x: float)→ float
Return the hyperbolic cosine of x.

May not be available on some boards.

math.sinh(x: float)→ float
Return the hyperbolic sine of x.

May not be available on some boards.

160 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

math.tanh(x: float)→ float
Return the hyperbolic tangent of x.

May not be available on some boards.

math.acosh(x: float)→ float
Return the inverse hyperbolic cosine of x.

May not be available on some boards.

math.asinh(x: float)→ float
Return the inverse hyperbolic sine of x.

May not be available on some boards.

math.atanh(x: float)→ float
Return the inverse hyperbolic tangent of x.

May not be available on some boards.

math.erf(x: float)→ float
Return the error function of x.

May not be available on some boards.

math.erfc(x: float)→ float
Return the complementary error function of x.

May not be available on some boards.

math.gamma(x: float)→ float
Return the gamma function of x.

May not be available on some boards.

math.lgamma(x: float)→ float
Return the natural logarithm of the gamma function of x.

May not be available on some boards.

mdns – Multicast Domain Name Service

The mdns module provides basic support for multicast domain name services. Basic use provides hostname resolution
under the .local TLD. This module also supports DNS Service Discovery that allows for discovering other hosts that
provide a desired service.

class mdns.RemoteService

Encapsulates information about a remote service that was found during a search. This object may only be created
by a mdns.Server. It has no user-visible constructor.

Cannot be instantiated directly. Use mdns.Server.find .

hostname :str

The hostname of the device (read-only),.

instance_name :str

The human readable instance name for the service. (read-only)

service_type :str

The service type string such as _http. (read-only)

1.8. Full Table of Contents 161

CircuitPython Documentation, Release 7.3.3

protocol :str

The protocol string such as _tcp. (read-only)

port :int

Port number used for the service. (read-only)

__del__()→ None
Deletes the RemoteService object.

class mdns.Server(network_interface: wifi.Radio)
The MDNS Server responds to queries for this device’s information and allows for querying other devices.

Constructs or returns the mdns.Server for the given network_interface. (CircuitPython may already be using it.)
Only native interfaces are currently supported.

hostname :str

Hostname resolvable as <hostname>.local in addition to circuitpython.local. Make sure this is
unique across all devices on the network. It defaults to cpy-###### where ###### is the hex digits of the
last three bytes of the mac address.

instance_name :str

Human readable name to describe the device.

deinit()→ None
Stops the server

find(service_type: str, protocol: str, *, timeout: float = 1)→ Tuple[RemoteService]
Find all locally available remote services with the given service type and protocol.

This doesn’t allow for direct hostname lookup. To do that, use socketpool.SocketPool.
getaddrinfo().

Parameters

• service_type (str) – The service type such as “_http”

• protocol (str) – The service protocol such as “_tcp”

• timeout (float/int) – Time to wait for responses

advertise_service(*, service_type: str, protocol: str, port: int)→ None
Respond to queries for the given service with the given port.

Parameters

• service_type (str) – The service type such as “_http”

• protocol (str) – The service protocol such as “_tcp”

• port (int) – The port used by the service

162 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

memorymonitor – Memory monitoring helpers

exception memorymonitor.AllocationError

Bases: Exception

Catchall exception for allocation related errors.

Initialize self. See help(type(self)) for accurate signature.

class memorymonitor.AllocationAlarm(*, minimum_block_count: int = 1)

Throw an exception when an allocation of minimum_block_count or more blocks
occurs while active.

Track allocations:

import memorymonitor

aa = memorymonitor.AllocationAlarm(minimum_block_count=2)
x = 2
Should not allocate any blocks.
with aa:

x = 5

Should throw an exception when allocating storage for the 20 bytes.
with aa:

x = bytearray(20)

ignore(count: int)→ AllocationAlarm
Sets the number of applicable allocations to ignore before raising the exception. Automatically set back to
zero at context exit.

Use it within a with block:

Will not alarm because the bytearray allocation will be ignored.
with aa.ignore(2):

x = bytearray(20)

__enter__()→ AllocationAlarm
Enables the alarm.

__exit__()→ None
Automatically disables the allocation alarm when exiting a context. See Lifetime and ContextManagers for
more info.

class memorymonitor.AllocationSize

Tracks the number of allocations in power of two buckets.

It will have 16 16-bit buckets to track allocation counts. It is total allocations meaning frees are ignored. Real-
located memory is counted twice, at allocation and when reallocated with the larger size.

The buckets are measured in terms of blocks which is the finest granularity of the heap. This means bucket 0
will count all allocations less than or equal to the number of bytes per block, typically 16. Bucket 2 will be less
than or equal to 4 blocks. See bytes_per_block to convert blocks to bytes.

Multiple AllocationSizes can be used to track different code boundaries.

Track allocations:

1.8. Full Table of Contents 163

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

import memorymonitor

mm = memorymonitor.AllocationSize()
with mm:
print("hello world" * 3)

for bucket, count in enumerate(mm):
print("<", 2 ** bucket, count)

bytes_per_block :int

Number of bytes per block

__enter__()→ AllocationSize
Clears counts and resumes tracking.

__exit__()→ None
Automatically pauses allocation tracking when exiting a context. See Lifetime and ContextManagers for
more info.

__len__()→ int
Returns the number of allocation buckets.

This allows you to:

mm = memorymonitor.AllocationSize()
print(len(mm))

__getitem__(index: int)→ Optional[int]
Returns the allocation count for the given bucket.

This allows you to:

mm = memorymonitor.AllocationSize()
print(mm[0])

microcontroller – Pin references and cpu functionality

The microcontroller module defines the pins and other bare-metal hardware from the perspective of the microcon-
troller. See board for board-specific pin mappings.

microcontroller.cpu :Processor

CPU information and control, such as cpu.temperature and cpu.frequency (clock frequency). This object
is an instance of microcontroller.Processor.

microcontroller.cpus :Processor

CPU information and control, such as cpus[0].temperature and cpus[1].frequency (clock frequency) on
chips with more than 1 cpu. The index selects which cpu. This object is an instance of microcontroller.
Processor.

microcontroller.delay_us(delay: int)→ None
Dedicated delay method used for very short delays. Do not do long delays because this stops all other functions
from completing. Think of this as an empty while loop that runs for the specified (delay) time. If you have
other code or peripherals (e.g audio recording) that require specific timing or processing while you are waiting,
explore a different avenue such as using time.sleep().

164 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

microcontroller.disable_interrupts()→ None
Disable all interrupts. Be very careful, this can stall everything.

microcontroller.enable_interrupts()→ None
Enable the interrupts that were enabled at the last disable.

microcontroller.on_next_reset(run_mode: RunMode)→ None
Configure the run mode used the next time the microcontroller is reset but not powered down.

Parameters
run_mode (RunMode) – The next run mode

microcontroller.reset()→ None
Reset the microcontroller. After reset, the microcontroller will enter the run mode last set by on_next_reset.

Warning: This may result in file system corruption when connected to a host computer. Be very careful
when calling this! Make sure the device “Safely removed” on Windows or “ejected” on Mac OSX and Linux.

microcontroller.nvm :Optional[nvm.ByteArray]

Available non-volatile memory. This object is the sole instance of nvm.ByteArray when available or None
otherwise.

Type
nvm.ByteArray or None

microcontroller.watchdog :Optional[watchdog.WatchDogTimer]

Available watchdog timer. This object is the sole instance of watchdog.WatchDogTimer when available or
None otherwise.

class microcontroller.Pin

Identifies an IO pin on the microcontroller.

Identifies an IO pin on the microcontroller. They are fixed by the hardware so they cannot be constructed on
demand. Instead, use board or microcontroller.pin to reference the desired pin.

__hash__()→ int
Returns a hash for the Pin.

class microcontroller.Processor

Microcontroller CPU information and control

Usage:

import microcontroller
print(microcontroller.cpu.frequency)
print(microcontroller.cpu.temperature)

Note that on chips with more than one cpu (such as the RP2040)
microcontroller.cpu will return the value for CPU 0.
To get values from other CPUs use microcontroller.cpus indexed by
the number of the desired cpu. i.e.

print(microcontroller.cpus[0].temperature)
print(microcontroller.cpus[1].frequency)

1.8. Full Table of Contents 165

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

You cannot create an instance of microcontroller.Processor. Use microcontroller.cpu to access the
sole instance available.

frequency :int

The CPU operating frequency in Hertz. (read-only)

reset_reason :ResetReason

The reason the microcontroller started up from reset state.

temperature :Optional[float]

The on-chip temperature, in Celsius, as a float. (read-only)

Is None if the temperature is not available.

uid :bytearray

The unique id (aka serial number) of the chip as a bytearray. (read-only)

voltage :Optional[float]

The input voltage to the microcontroller, as a float. (read-only)

Is None if the voltage is not available.

class microcontroller.ResetReason

The reason the microntroller was last reset

POWER_ON :object

The microntroller was started from power off.

BROWNOUT :object

The microntroller was reset due to too low a voltage.

SOFTWARE :object

The microntroller was reset from software.

DEEP_SLEEP_ALARM :object

The microntroller was reset for deep sleep and restarted by an alarm.

RESET_PIN :object

The microntroller was reset by a signal on its reset pin. The pin might be connected to a reset button.

WATCHDOG :object

The microcontroller was reset by its watchdog timer.

UNKNOWN :object

The microntroller restarted for an unknown reason.

RESCUE_DEBUG :object

The microntroller was reset by the rescue debug port.

class microcontroller.RunMode

run state of the microcontroller

Enum-like class to define the run mode of the microcontroller and CircuitPython.

NORMAL :RunMode

Run CircuitPython as normal.

166 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

SAFE_MODE :RunMode

Run CircuitPython in safe mode. User code will not run and the file system will be writeable over USB.

UF2 :RunMode

Run the uf2 bootloader.

BOOTLOADER :RunMode

Run the default bootloader.

msgpack – Pack object in msgpack format

The msgpack format is similar to json, except that the encoded data is binary. See https://msgpack.org for details. The
module implements a subset of the cpython module msgpack-python.

Not implemented: 64-bit int, uint, float.

Example 1:

import msgpack
from io import BytesIO

b = BytesIO()
msgpack.pack({'list': [True, False, None, 1, 3.14], 'str': 'blah'}, b)
b.seek(0)
print(msgpack.unpack(b))

Example 2: handling objects:

from msgpack import pack, unpack, ExtType
from io import BytesIO

class MyClass:
def __init__(self, val):

self.value = val
def __str__(self):

return str(self.value)

data = MyClass(b'my_value')

def encoder(obj):
if isinstance(obj, MyClass):

return ExtType(1, obj.value)
return f"no encoder for {obj}"

def decoder(code, data):
if code == 1:

return MyClass(data)
return f"no decoder for type {code}"

(continues on next page)

1.8. Full Table of Contents 167

https://msgpack.org

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

buffer = BytesIO()
pack(data, buffer, default=encoder)
buffer.seek(0)
decoded = unpack(buffer, ext_hook=decoder)
print(f"{data} -> {buffer.getvalue()} -> {decoded}")

msgpack.pack(obj: object, stream: circuitpython_typing.ByteStream, *, default: Union[Callable[[object], None],
None] = None)→ None

Output object to stream in msgpack format.

Parameters

• obj (object) – Object to convert to msgpack format.

• stream (ByteStream) – stream to write to

• default (Optional[Callable[[object], None]]) – function called for python objects
that do not have a representation in msgpack format.

msgpack.unpack(stream: circuitpython_typing.ByteStream, *, ext_hook: Union[Callable[[int, bytes], object],
None] = None, use_list: bool = True)→ object

Unpack and return one object from stream.

Parameters

• stream (ByteStream) – stream to read from

• ext_hook (Optional[Callable[[int, bytes], object]]) – function called for ob-
jects in msgpack ext format.

• use_list (Optional[bool]) – return array as list or tuple (use_list=False).

Return object
object read from stream.

class msgpack.ExtType(code: int, data: bytes)
ExtType represents ext type in msgpack.

Constructor :param int code: type code in range 0~127. :param bytes data: representation.

code :int

The type code, in range 0~127.

data :bytes

Data.

multiterminal – Manage additional terminal sources

The multiterminal module allows you to configure an additional serial terminal source. Incoming characters are
accepted from both the internal serial connection and the optional secondary connection.

multiterminal.get_secondary_terminal()→ Optional[BinaryIO]
Returns the current secondary terminal.

multiterminal.set_secondary_terminal(stream: BinaryIO)→ None
Read additional input from the given stream and write out back to it. This doesn’t replace the core stream (usually
UART or native USB) but is mixed in instead.

168 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Parameters
stream (stream) – secondary stream

multiterminal.clear_secondary_terminal()→ None
Clears the secondary terminal.

multiterminal.schedule_secondary_terminal_read(socket: schedule_secondary_terminal_read.socket)→
None

In cases where the underlying OS is doing task scheduling, this notifies the OS when more data is available on
the socket to read. This is useful as a callback for lwip sockets.

neopixel_write – Low-level neopixel implementation

The neopixel_write module contains a helper method to write out bytes in the 800khz neopixel protocol.

For example, to turn off a single neopixel (like the status pixel on Express boards.)

import board
import neopixel_write
import digitalio

pin = digitalio.DigitalInOut(board.NEOPIXEL)
pin.direction = digitalio.Direction.OUTPUT
pixel_off = bytearray([0, 0, 0])
neopixel_write.neopixel_write(pin, pixel_off)

Note: This module is typically not used by user level code.

For more information on actually using NeoPixels, refer to the CircuitPython Essentials Learn guide

For a much more thorough guide about using NeoPixels, refer to the Adafruit NeoPixel Überguide.

neopixel_write.neopixel_write(digitalinout: digitalio.DigitalInOut, buf:
circuitpython_typing.ReadableBuffer)→ None

Write buf out on the given DigitalInOut.

Parameters

• digitalinout (DigitalInOut) – the DigitalInOut to output with

• buf (ReadableBuffer) – The bytes to clock out. No assumption is made about color order

nvm – Non-volatile memory

The nvm module allows you to store whatever raw bytes you wish in a reserved section non-volatile memory.

Note that this module can’t be imported and used directly. The sole instance of ByteArray is available at
microcontroller.nvm .

class nvm.ByteArray

Presents a stretch of non-volatile memory as a bytearray.

Non-volatile memory is available as a byte array that persists over reloads and power cycles. Each assignment
causes an erase and write cycle so its recommended to assign all values to change at once.

Usage:

1.8. Full Table of Contents 169

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/circuitpython-essentials/circuitpython-neopixel
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

import microcontroller
microcontroller.nvm[0:3] = b"\xcc\x10\x00"

Not currently dynamically supported. Access the sole instance through microcontroller.nvm .

__bool__()→ bool

__len__()→ int
Return the length. This is used by (len)

__getitem__(index: slice)→ bytearray
__getitem__(index: int)→ int

Returns the value at the given index.

__setitem__(index: slice, value: circuitpython_typing.ReadableBuffer)→ None
__setitem__(index: int, value: int)→ None

Set the value at the given index.

onewireio – Low-level bit primitives for Maxim (formerly Dallas Semi) one-wire protocol.

Protocol definition is here: https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

class onewireio.OneWire(pin: microcontroller.Pin)
Create a OneWire object associated with the given pin.

The object implements the lowest level timing-sensitive bits of the protocol.

Parameters
pin (Pin) – Pin connected to the OneWire bus

Note: The OneWire class is available on busio and bitbangio in CircuitPython 7.x for backwards compati-
bility but will be removed in CircuitPython 8.0.0.

Read a short series of pulses:

import onewireio
import board

onewire = onewireio.OneWire(board.D7)
onewire.reset()
onewire.write_bit(True)
onewire.write_bit(False)
print(onewire.read_bit())

deinit()→ None
Deinitialize the OneWire bus and release any hardware resources for reuse.

__enter__()→ OneWire
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

170 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://www.maximintegrated.com/en/app-notes/index.mvp/id/126
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

reset()→ bool
Reset the OneWire bus and read presence

Returns
False when at least one device is present

Return type
bool

read_bit()→ bool
Read in a bit

Returns
bit state read

Return type
bool

write_bit(value: bool)→ None
Write out a bit based on value.

os – functions that an OS normally provides

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: os.

os.uname()→ _Uname
Returns a named tuple of operating specific and CircuitPython port specific information.

class os._Uname

Bases: NamedTuple

The type of values that uname() returns

sysname :str

nodename :str

release :str

version :str

machine :str

os.chdir(path: str)→ None
Change current directory.

os.getcwd()→ str
Get the current directory.

os.listdir(dir: str)→ str
With no argument, list the current directory. Otherwise list the given directory.

os.mkdir(path: str)→ None
Create a new directory.

os.remove(path: str)→ None
Remove a file.

1.8. Full Table of Contents 171

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/os.html#module-os
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

os.rmdir(path: str)→ None
Remove a directory.

os.rename(old_path: str, new_path: str)→ str
Rename a file.

os.stat(path: str)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Get the status of a file or directory.

Note: On builds without long integers, the number of seconds for contemporary dates will not fit in a small
integer. So the time fields return 946684800, which is the number of seconds corresponding to 1999-12-31.

os.statvfs(path: str)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Get the status of a filesystem.

Returns a tuple with the filesystem information in the following order:

• f_bsize – file system block size

• f_frsize – fragment size

• f_blocks – size of fs in f_frsize units

• f_bfree – number of free blocks

• f_bavail – number of free blocks for unprivileged users

• f_files – number of inodes

• f_ffree – number of free inodes

• f_favail – number of free inodes for unprivileged users

• f_flag – mount flags

• f_namemax – maximum filename length

Parameters related to inodes: f_files, f_ffree, f_avail and the f_flags parameter may return 0 as they
can be unavailable in a port-specific implementation.

os.sync()→ None
Sync all filesystems.

os.urandom(size: int)→ str
Returns a string of size random bytes based on a hardware True Random Number Generator. When not available,
it will raise a NotImplementedError.

os.sep :str

Separator used to delineate path components such as folder and file names.

172 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

paralleldisplay – Native helpers for driving parallel displays

class paralleldisplay.ParallelBus(*, data0: microcontroller.Pin, command: microcontroller.Pin,
chip_select: microcontroller.Pin, write: microcontroller.Pin, read:
Optional[microcontroller.Pin], reset: Optional[microcontroller.Pin] =
None, frequency: int = 30000000)

Manage updating a display over 8-bit parallel bus in the background while Python code runs. This protocol may
be refered to as 8080-I Series Parallel Interface in datasheets. It doesn’t handle display initialization.

Create a ParallelBus object associated with the given pins. The bus is inferred from data0 by implying the next
7 additional pins on a given GPIO port.

The parallel bus and pins are then in use by the display until displayio.release_displays() is called even
after a reload. (It does this so CircuitPython can use the display after your code is done.) So, the first time you
initialize a display bus in code.py you should call displayio.release_displays() first, otherwise it will
error after the first code.py run.

Parameters

• data_pins (microcontroller.Pin) – A list of data pins. Specify exactly one of
data_pins or data0.

• data0 (microcontroller.Pin) – The first data pin. The rest are implied

• command (microcontroller.Pin) – Data or command pin

• chip_select (microcontroller.Pin) – Chip select pin

• write (microcontroller.Pin) – Write pin

• read (microcontroller.Pin) – Read pin, optional

• reset (microcontroller.Pin) – Reset pin, optional

• frequency (int) – The communication frequency in Hz for the display on the bus

reset()→ None
Performs a hardware reset via the reset pin. Raises an exception if called when no reset pin is available.

send(command: int, data: circuitpython_typing.ReadableBuffer)→ None
Sends the given command value followed by the full set of data. Display state, such as vertical scroll, set
via send may or may not be reset once the code is done.

ps2io – Support for PS/2 protocol

The ps2io module contains classes to provide PS/2 communication.

Warning: This module is not available in some SAMD21 builds. See the Module Support Matrix - Which Modules
Are Available on Which Boards for more info.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class ps2io.Ps2(data_pin: microcontroller.Pin, clock_pin: microcontroller.Pin)
Communicate with a PS/2 keyboard or mouse

1.8. Full Table of Contents 173

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Ps2 implements the PS/2 keyboard/mouse serial protocol, used in legacy devices. It is similar to UART but
there are only two lines (Data and Clock). PS/2 devices are 5V, so bidirectional level converters must be used to
connect the I/O lines to pins of 3.3V boards.

Create a Ps2 object associated with the given pins.

Parameters

• data_pin (Pin) – Pin tied to data wire.

• clock_pin (Pin) – Pin tied to clock wire. This pin must support interrupts.

Read one byte from PS/2 keyboard and turn on Scroll Lock LED:

import ps2io
import board

kbd = ps2io.Ps2(board.D10, board.D11)

while len(kbd) == 0:
pass

print(kbd.popleft())
print(kbd.sendcmd(0xed))
print(kbd.sendcmd(0x01))

deinit()→ None
Deinitialises the Ps2 and releases any hardware resources for reuse.

__enter__()→ Ps2
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

popleft()→ int
Removes and returns the oldest received byte. When buffer is empty, raises an IndexError exception.

sendcmd(byte: int)→ int
Sends a command byte to PS/2. Returns the response byte, typically the general ack value (0xFA). Some
commands return additional data which is available through popleft().

Raises a RuntimeError in case of failure. The root cause can be found by calling clear_errors(). It is
advisable to call clear_errors() before sendcmd() to flush any previous errors.

Parameters
byte (int) – byte value of the command

clear_errors()→ None
Returns and clears a bitmap with latest recorded communication errors.

Reception errors (arise asynchronously, as data is received):

0x01: start bit not 0

0x02: timeout

0x04: parity bit error

0x08: stop bit not 1

174 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

0x10: buffer overflow, newest data discarded

Transmission errors (can only arise in the course of sendcmd()):

0x100: clock pin didn’t go to LO in time

0x200: clock pin didn’t go to HI in time

0x400: data pin didn’t ACK

0x800: clock pin didn’t ACK

0x1000: device didn’t respond to RTS

0x2000: device didn’t send a response byte in time

__bool__()→ bool

__len__()→ int
Returns the number of received bytes in buffer, available to popleft().

pulseio – Support for individual pulse based protocols

The pulseio module contains classes to provide access to basic pulse IO. Individual pulses are commonly used in
infrared remotes and in DHT temperature sensors.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class pulseio.PulseIn(pin: microcontroller.Pin, maxlen: int = 2, *, idle_state: bool = False)
Measure a series of active and idle pulses. This is commonly used in infrared receivers and low cost temperature
sensors (DHT). The pulsed signal consists of timed active and idle periods. Unlike PWM, there is no set duration
for active and idle pairs.

Create a PulseIn object associated with the given pin. The object acts as a read-only sequence of pulse lengths
with a given max length. When it is active, new pulse lengths are added to the end of the list. When there is no
more room (len() == maxlen) the oldest pulse length is removed to make room.

Parameters

• pin (Pin) – Pin to read pulses from.

• maxlen (int) – Maximum number of pulse durations to store at once

• idle_state (bool) – Idle state of the pin. At start and after resume the first recorded pulse
will the opposite state from idle.

Read a short series of pulses:

import pulseio
import board

pulses = pulseio.PulseIn(board.D7)

Wait for an active pulse
while len(pulses) == 0:

pass
Pause while we do something with the pulses
pulses.pause()

(continues on next page)

1.8. Full Table of Contents 175

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

Print the pulses. pulses[0] is an active pulse unless the length
reached max length and idle pulses are recorded.
print(pulses)

Clear the rest
pulses.clear()

Resume with an 80 microsecond active pulse
pulses.resume(80)

maxlen :int

The maximum length of the PulseIn. When len() is equal to maxlen, it is unclear which pulses are active
and which are idle.

paused :bool

True when pulse capture is paused as a result of pause() or an error during capture such as a signal that
is too fast.

deinit()→ None
Deinitialises the PulseIn and releases any hardware resources for reuse.

__enter__()→ PulseIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

pause()→ None
Pause pulse capture

resume(trigger_duration: int = 0)→ None
Resumes pulse capture after an optional trigger pulse.

Warning: Using trigger pulse with a device that drives both high and low signals risks a short. Make
sure your device is open drain (only drives low) when using a trigger pulse. You most likely added a
“pull-up” resistor to your circuit to do this.

Parameters
trigger_duration (int) – trigger pulse duration in microseconds

clear()→ None
Clears all captured pulses

popleft()→ int
Removes and returns the oldest read pulse.

__bool__()→ bool

__len__()→ int
Returns the number of pulse durations currently stored.

This allows you to:

176 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

pulses = pulseio.PulseIn(pin)
print(len(pulses))

__getitem__(index: int)→ Optional[int]
Returns the value at the given index or values in slice.

This allows you to:

pulses = pulseio.PulseIn(pin)
print(pulses[0])

class pulseio.PulseOut(pin: microcontroller.Pin, *, frequency: int = 38000, duty_cycle: int = 1 << 15)
Pulse PWM “carrier” output on and off. This is commonly used in infrared remotes. The pulsed signal consists
of timed on and off periods. Unlike PWM, there is no set duration for on and off pairs.

Create a PulseOut object associated with the given pin.

Parameters

• pin (Pin) – Signal output pin

• frequency (int) – Carrier signal frequency in Hertz

• duty_cycle (int) – 16-bit duty cycle of carrier frequency (0 - 65536)

For backwards compatibility, pin may be a PWMOut object used as the carrier. This compatibility will be
removed in CircuitPython 8.0.0.

Send a short series of pulses:

import array
import pulseio
import pwmio
import board

50% duty cycle at 38kHz.
pulse = pulseio.PulseOut(board.LED, frequency=38000, duty_cycle=32768)
on off on off on
pulses = array.array('H', [65000, 1000, 65000, 65000, 1000])
pulse.send(pulses)

Modify the array of pulses.
pulses[0] = 200
pulse.send(pulses)

deinit()→ None
Deinitialises the PulseOut and releases any hardware resources for reuse.

__enter__()→ PulseOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

send(pulses: circuitpython_typing.ReadableBuffer)→ None
Pulse alternating on and off durations in microseconds starting with on. pulses must be an array.array
with data type ‘H’ for unsigned halfword (two bytes).

1.8. Full Table of Contents 177

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

This method waits until the whole array of pulses has been sent and ensures the signal is off afterwards.

Parameters
pulses (array.array) – pulse durations in microseconds

pwmio – Support for PWM based protocols

The pwmio module contains classes to provide access to basic pulse IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import time
import pwmio
import board

pwm = pwmio.PWMOut(board.LED)
pwm.duty_cycle = 2 ** 15
time.sleep(0.1)

This example will initialize the the device, set duty_cycle, and then sleep 0.1 seconds. CircuitPython will automati-
cally turn off the PWM when it resets all hardware after program completion. Use deinit() or a with statement to
do it yourself.

For the essentials of pwmio, see the CircuitPython Essentials Learn guide.

class pwmio.PWMOut(pin: microcontroller.Pin, *, duty_cycle: int = 0, frequency: int = 500, variable_frequency:
bool = False)

Output a Pulse Width Modulated signal on a given pin.

Create a PWM object associated with the given pin. This allows you to write PWM signals out on the given pin.
Frequency is fixed after init unless variable_frequency is True.

Note: When variable_frequency is True, further PWM outputs may be limited because it may take more
internal resources to be flexible. So, when outputting both fixed and flexible frequency signals construct the fixed
outputs first.

Parameters

• pin (Pin) – The pin to output to

• duty_cycle (int) – The fraction of each pulse which is high. 16-bit

• frequency (int) – The target frequency in Hertz (32-bit)

• variable_frequency (bool) – True if the frequency will change over time

Simple LED on:

import pwmio
import board

pwm = pwmio.PWMOut(board.LED)

(continues on next page)

178 Chapter 1. CircuitPython

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pwm

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

while True:
pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle (half of 2 **␣

→˓16) at the default 500hz

PWM LED fade:

import pwmio
import board

pwm = pwmio.PWMOut(board.LED) # output on LED pin with default of 500Hz

while True:
for cycle in range(0, 65535): # Cycles through the full PWM range from 0 to␣

→˓65535
pwm.duty_cycle = cycle # Cycles the LED pin duty cycle through the range␣

→˓of values
for cycle in range(65534, 0, -1): # Cycles through the PWM range backwards␣

→˓from 65534 to 0
pwm.duty_cycle = cycle # Cycles the LED pin duty cycle through the range␣

→˓of values

PWM at specific frequency (servos and motors):

import pwmio
import board

pwm = pwmio.PWMOut(board.D13, frequency=50)
pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle (half of 2 ** 16) at␣
→˓50hz

Variable frequency (usually tones):

import pwmio
import board
import time

pwm = pwmio.PWMOut(board.D13, duty_cycle=2 ** 15, frequency=440, variable_
→˓frequency=True)
time.sleep(0.2)
pwm.frequency = 880
time.sleep(0.1)

duty_cycle :int

16 bit value that dictates how much of one cycle is high (1) versus low (0). 0xffff will always be high, 0
will always be low and 0x7fff will be half high and then half low.

Depending on how PWM is implemented on a specific board, the internal representation for duty cycle
might have less than 16 bits of resolution. Reading this property will return the value from the internal
representation, so it may differ from the value set.

frequency :int

32 bit value that dictates the PWM frequency in Hertz (cycles per second). Only writeable when constructed
with variable_frequency=True.

1.8. Full Table of Contents 179

CircuitPython Documentation, Release 7.3.3

Depending on how PWM is implemented on a specific board, the internal value for the PWM’s duty cycle
may need to be recalculated when the frequency changes. In these cases, the duty cycle is automatically
recalculated from the original duty cycle value. This should happen without any need to manually re-set
the duty cycle.

deinit()→ None
Deinitialises the PWMOut and releases any hardware resources for reuse.

__enter__()→ PWMOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

qrio – Low-level QR code decoding

Provides the QRDecoder object used for decoding QR codes. For more information about working with QR codes, see
this Learn guide.

Note: This module only handles decoding QR codes. If you are looking to generate a QR code, use the adafruit_miniqr
library

class qrio.PixelPolicy

EVERY_BYTE :PixelPolicy

The input buffer to QRDecoder.decode consists of greyscale values in every byte

EVEN_BYTES :PixelPolicy

The input buffer to QRDecoder.decode consists of greyscale values in positions 0, 2, . . . , and ignored
bytes in positions 1, 3, This can decode directly from YUV images where the even bytes hold the Y
(luminance) data.

ODD_BYTES :PixelPolicy

The input buffer to QRDecoder.decode consists of greyscale values in positions 1, 3, . . . , and ignored
bytes in positions 0, 2, This can decode directly from YUV images where the odd bytes hold the Y
(luminance) data

class qrio.QRDecoder(width: int, height: int)
Construct a QRDecoder object

Parameters

• width (int) – The pixel width of the image to decode

• height (int) – The pixel height of the image to decode

width :int

The width of image the decoder expects

height :int

The height of image the decoder expects

180 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/scan-qr-codes-with-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_miniQR
https://github.com/adafruit/Adafruit_CircuitPython_miniQR

CircuitPython Documentation, Release 7.3.3

decode(buffer: circuitpython_typing.ReadableBuffer, pixel_policy: PixelPolicy = PixelPolicy.EVERY_BYTE)
→ List[QRInfo]

Decode zero or more QR codes from the given image. The size of the buffer must be at least
length``×``width bytes for EVERY_BYTE, and 2×``length``×``width`` bytes for EVEN_BYTES or
ODD_BYTES.

class qrio.QRInfo

Information about a decoded QR code

payload :bytes

The content of the QR code

data_type :Union[str, int]

The encoding of the payload as a string (if a standard encoding) or int (if not standard)

rainbowio

rainbowio module.

Provides the colorwheel() function.

rainbowio.colorwheel(n: float)→ int
C implementation of the common colorwheel() function found in many examples. Returns the colorwheel RGB
value as an integer value for n (usable in neopixel and dotstar).

random – pseudo-random numbers and choices

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: random.

Like its CPython cousin, CircuitPython’s random seeds itself on first use with a true random from os.urandom() when
available or the uptime otherwise. Once seeded, it will be deterministic, which is why its bad for cryptography.

Warning: Numbers from this module are not cryptographically strong! Use bytes from os.urandom directly for
true randomness.

random._T

random.seed(seed: int)→ None
Sets the starting seed of the random number generation. Further calls to random will return deterministic results
afterwards.

random.getrandbits(k: int)→ int
Returns an integer with k random bits.

random.randrange(stop: int)→ int
random.randrange(start: int, stop: int)→ int
random.randrange(start: int, stop: int, step: int)→ int

Returns a randomly selected integer from range(start[, stop[, step]]).

random.randint(a: int, b: int)→ int
Returns a randomly selected integer between a and b inclusive. Equivalent to randrange(a, b + 1, 1)

1.8. Full Table of Contents 181

https://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

random.choice(seq: Sequence[_T])→ _T
Returns a randomly selected element from the given sequence. Raises IndexError when the sequence is empty.

random.random()→ float
Returns a random float between 0 and 1.0.

random.uniform(a: float, b: float)→ float
Returns a random float between a and b. It may or may not be inclusive depending on float rounding.

rgbmatrix – Low-level routines for bitbanged LED matrices

class rgbmatrix.RGBMatrix(*, width: int, bit_depth: int, rgb_pins: Sequence[digitalio.DigitalInOut],
addr_pins: Sequence[digitalio.DigitalInOut], clock_pin: digitalio.DigitalInOut,
latch_pin: digitalio.DigitalInOut, output_enable_pin: digitalio.DigitalInOut,
doublebuffer: bool = True, framebuffer:
Optional[circuitpython_typing.WriteableBuffer] = None, height: int = 0, tile: int =
1, serpentine: bool = True)

Displays an in-memory framebuffer to a HUB75-style RGB LED matrix.

Create a RGBMatrix object with the given attributes. The height of the display is determined by the num-
ber of rgb and address pins and the number of tiles: len(rgb_pins) // 3 * 2 ** len(address_pins) *
abs(tile). With 6 RGB pins, 4 address lines, and a single matrix, the display will be 32 pixels tall. If the
optional height parameter is specified and is not 0, it is checked against the calculated height.

Up to 30 RGB pins and 8 address pins are supported.

The RGB pins must be within a single “port” and performance and memory usage are best when they are all
within “close by” bits of the port. The clock pin must also be on the same port as the RGB pins. See the
documentation of the underlying protomatter C library for more information. Generally, Adafruit’s interface
boards are designed so that these requirements are met when matched with the intended microcontroller board.
For instance, the Feather M4 Express works together with the RGB Matrix Feather.

The framebuffer is in “RGB565” format.

“RGB565” means that it is organized as a series of 16-bit numbers where the highest 5 bits are interpreted as red,
the next 6 as green, and the final 5 as blue. The object can be any buffer, but array.array and ulab.ndarray
objects are most often useful. To update the content, modify the framebuffer and call refresh.

If a framebuffer is not passed in, one is allocated and initialized to all black. In any case, the framebuffer can be
retrieved by passing the RGBMatrix object to memoryview().

If doublebuffer is False, some memory is saved, but the display may flicker during updates.

A RGBMatrix is often used in conjunction with a framebufferio.FramebufferDisplay.

brightness :float

In the current implementation, 0.0 turns the display off entirely and any other value up to 1.0 turns the
display on fully.

width :int

The width of the display, in pixels

height :int

The height of the display, in pixels

deinit()→ None
Free the resources (pins, timers, etc.) associated with this rgbmatrix instance. After deinitialization, no
further operations may be performed.

182 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

refresh()→ None
Transmits the color data in the buffer to the pixels so that they are shown.

rotaryio – Support for reading rotation sensors

The rotaryio module contains classes to read different rotation encoding schemes. See Wikipedia’s Rotary Encoder
page for more background.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class rotaryio.IncrementalEncoder(pin_a: microcontroller.Pin, pin_b: microcontroller.Pin, divisor: int = 4)
IncrementalEncoder determines the relative rotational position based on two series of pulses.

Create an IncrementalEncoder object associated with the given pins. It tracks the positional state of an incre-
mental rotary encoder (also known as a quadrature encoder.) Position is relative to the position when the object
is contructed.

Parameters

• pin_a (Pin) – First pin to read pulses from.

• pin_b (Pin) – Second pin to read pulses from.

• divisor (int) – The divisor of the quadrature signal.

For example:

import rotaryio
import time
from board import *

enc = rotaryio.IncrementalEncoder(D1, D2)
last_position = None
while True:

position = enc.position
if last_position == None or position != last_position:

print(position)
last_position = position

divisor :int

The divisor of the quadrature signal. Use 1 for encoders without detents, or encoders with 4 detents per
cycle. Use 2 for encoders with 2 detents per cycle. Use 4 for encoders with 1 detent per cycle.

position :int

The current position in terms of pulses. The number of pulses per rotation is defined by the specific hardware
and by the divisor.

deinit()→ None
Deinitializes the IncrementalEncoder and releases any hardware resources for reuse.

__enter__()→ IncrementalEncoder
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

1.8. Full Table of Contents 183

https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Rotary_encoder
https://en.wikipedia.org/wiki/Rotary_encoder
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

rp2pio – Hardware interface to RP2 series’ programmable IO (PIO) peripheral.

Note: This module is intended to be used with the adafruit_pioasm library. For an introduction and guide to working
with PIO in CircuitPython, see this Learn guide.

rp2pio.pins_are_sequential(pins: List[microcontroller.Pin])→ bool
Return True if the pins have sequential GPIO numbers, False otherwise

class rp2pio.StateMachine(program: circuitpython_typing.ReadableBuffer, frequency: int, *, init:
Optional[circuitpython_typing.ReadableBuffer] = None, first_out_pin:
Optional[microcontroller.Pin] = None, out_pin_count: int = 1,
initial_out_pin_state: int = 0, initial_out_pin_direction: int = 4294967295,
first_in_pin: Optional[microcontroller.Pin] = None, in_pin_count: int = 1,
pull_in_pin_up: int = 0, pull_in_pin_down: int = 0, first_set_pin:
Optional[microcontroller.Pin] = None, set_pin_count: int = 1,
initial_set_pin_state: int = 0, initial_set_pin_direction: int = 31, first_sideset_pin:
Optional[microcontroller.Pin] = None, sideset_pin_count: int = 1,
initial_sideset_pin_state: int = 0, initial_sideset_pin_direction: int = 31,
sideset_enable: bool = False, jmp_pin: Optional[microcontroller.Pin] = None,
jmp_pin_pull: Optional[digitalio.Pull] = None, exclusive_pin_use: bool = True,
auto_pull: bool = False, pull_threshold: int = 32, out_shift_right: bool = True,
wait_for_txstall: bool = True, auto_push: bool = False, push_threshold: int = 32,
in_shift_right: bool = True, user_interruptible: bool = True, wrap_target: int = 0,
wrap: int = -1)

A single PIO StateMachine

The programmable I/O peripheral on the RP2 series of microcontrollers is unique. It is a collection of generic
state machines that can be used for a variety of protocols. State machines may be independent or coordinated.
Program memory and IRQs are shared between the state machines in a particular PIO instance. They are inde-
pendent otherwise.

This class is designed to facilitate sharing of PIO resources. By default, it is assumed that the state machine is
used on its own and can be placed in either PIO. State machines with the same program will be placed in the
same PIO if possible.

Construct a StateMachine object on the given pins with the given program.

Parameters

• program (ReadableBuffer) – the program to run with the state machine

• frequency (int) – the target clock frequency of the state machine. Actual may be less.

• init (ReadableBuffer) – a program to run once at start up. This is run after program is
started so instructions may be intermingled

• first_out_pin (Pin) – the first pin to use with the OUT instruction

• out_pin_count (int) – the count of consecutive pins to use with OUT starting at
first_out_pin

• initial_out_pin_state (int) – the initial output value for out pins starting at
first_out_pin

• initial_out_pin_direction (int) – the initial output direction for out pins starting at
first_out_pin

• first_in_pin (Pin) – the first pin to use with the IN instruction

184 Chapter 1. CircuitPython

https://github.com/adafruit/Adafruit_CircuitPython_PIOASM
https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython

CircuitPython Documentation, Release 7.3.3

• in_pin_count (int) – the count of consecutive pins to use with IN starting at first_in_pin

• pull_in_pin_up (int) – a 1-bit in this mask sets pull up on the corresponding in pin

• pull_in_pin_down (int) – a 1-bit in this mask sets pull down on the corresponding in
pin. Setting both pulls enables a “bus keep” function, i.e. a weak pull to whatever is current
high/low state of GPIO.

• first_set_pin (Pin) – the first pin to use with the SET instruction

• set_pin_count (int) – the count of consecutive pins to use with SET starting at
first_set_pin

• initial_set_pin_state (int) – the initial output value for set pins starting at
first_set_pin

• initial_set_pin_direction (int) – the initial output direction for set pins starting at
first_set_pin

• first_sideset_pin (Pin) – the first pin to use with a side set

• sideset_pin_count (int) – the count of consecutive pins to use with a side set starting at
first_sideset_pin. Does not include sideset enable

• initial_sideset_pin_state (int) – the initial output value for sideset pins starting at
first_sideset_pin

• initial_sideset_pin_direction (int) – the initial output direction for sideset pins
starting at first_sideset_pin

• sideset_enable (bool) – True when the top sideset bit is to enable. This should be used
with the “.side_set # opt” directive

• jmp_pin (Pin) – the pin which determines the branch taken by JMP PIN instructions

• jmp_pin_pull (Pull) – The pull value for the jmp pin, default is no pull.

• exclusive_pin_use (bool) – When True, do not share any pins with other state machines.
Pins are never shared with other peripherals

• auto_pull (bool) – When True, automatically load data from the tx FIFO into the output
shift register (OSR) when an OUT instruction shifts more than pull_threshold bits

• pull_threshold (int) – Number of bits to shift before loading a new value into the OSR
from the tx FIFO

• out_shift_right (bool) – When True, data is shifted out the right side (LSB) of the
OSR. It is shifted out the left (MSB) otherwise. NOTE! This impacts data alignment when
the number of bytes is not a power of two (1, 2 or 4 bytes).

• wait_for_txstall (bool) – When True, writing data out will block until the TX FIFO
and OSR are empty and an instruction is stalled waiting for more data. When False, data
writes won’t wait for the OSR to empty (only the TX FIFO) so make sure you give enough
time before deiniting or stopping the state machine.

• auto_push (bool) – When True, automatically save data from input shift register (ISR) into
the rx FIFO when an IN instruction shifts more than push_threshold bits

• push_threshold (int) – Number of bits to shift before saving the ISR value to the RX
FIFO

• in_shift_right (bool) – When True, data is shifted into the right side (LSB) of the ISR.
It is shifted into the left (MSB) otherwise. NOTE! This impacts data alignment when the
number of bytes is not a power of two (1, 2 or 4 bytes).

1.8. Full Table of Contents 185

CircuitPython Documentation, Release 7.3.3

• user_interruptible (bool) – When True (the default), write(), readinto(), and
write_readinto() can be interrupted by a ctrl-C. This is useful when developing a PIO
program: if there is an error in the program that causes an infinite loop, you will be able to
interrupt the loop. However, if you are writing to a device that can get into a bad state if a
read or write is interrupted, you may want to set this to False after your program has been
vetted.

• wrap_target (int) – The target instruction number of automatic wrap. Defaults to the first
instruction of the program.

• wrap (int) – The instruction after which to wrap to the wrap instruction. As a special case,
-1 (the default) indicates the last instruction of the program.

frequency :int

The actual state machine frequency. This may not match the frequency requested due to internal limitations.

txstall :bool

True when the state machine has stalled due to a full TX FIFO since the last clear_txstall call.

rxstall :bool

True when the state machine has stalled due to a full RX FIFO since the last clear_rxfifo call.

in_waiting :int

The number of words available to readinto

deinit()→ None
Turn off the state machine and release its resources.

__enter__()→ StateMachine
No-op used by Context Managers. Provided by context manager helper.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

restart()→ None
Resets this state machine, runs any init and enables the clock.

run(instructions: circuitpython_typing.ReadableBuffer)→ None
Runs all given instructions. They will likely be interleaved with in-memory instructions. Make sure this
doesn’t wait for input!

This can be used to output internal state to the RX FIFO and then read with readinto.

stop()→ None
Stops the state machine clock. Use restart to enable it.

write(buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: Optional[int] = None, swap: bool
= False)→ None

Write the data contained in buffer to the state machine. If the buffer is empty, nothing happens.

Writes to the FIFO will match the input buffer’s element size. For example, bytearray elements will per-
form 8 bit writes to the PIO FIFO. The RP2040’s memory bus will duplicate the value into the other byte
positions. So, pulling more data in the PIO assembly will read the duplicated values.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size.

Parameters

• buffer (ReadableBuffer) – Write out the data in this buffer

186 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• start (int) – Start of the slice of buffer to write out: buffer[start:end]

• end (int) – End of the slice; this index is not included. Defaults to len(buffer)

• swap (bool) – For 2- and 4-byte elements, swap (reverse) the byte order

background_write(once: Optional[circuitpython_typing.ReadableBuffer] = None, *, loop:
Optional[circuitpython_typing.ReadableBuffer] = None, swap: bool = False)→ None

Write data to the TX fifo in the background, with optional looping.

First, if any previous once or loop buffer has not been started, this function blocks until they have. This
means that any once or loop buffer will be written at least once. Then the once and/or loop buffers are
queued. and the function returns. The once buffer (if specified) will be written just once. Finally, the loop
buffer (if specified) will continue being looped indefinitely.

Writes to the FIFO will match the input buffer’s element size. For example, bytearray elements will per-
form 8 bit writes to the PIO FIFO. The RP2040’s memory bus will duplicate the value into the other byte
positions. So, pulling more data in the PIO assembly will read the duplicated values.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size,
or use memoryview.cast to change the interpretation of an existing buffer. To send just part of a larger
buffer, slice a memoryview of it.

If a buffer is modified while it is being written out, the updated values will be used. However, because of
interactions between CPU writes, DMA and the PIO FIFO are complex, it is difficult to predict the result
of modifying multiple values. Instead, alternate between a pair of buffers.

Having both a once and a loop parameter is to support a special case in PWM generation where a change
in duty cycle requires a special transitional buffer to be used exactly once. Most use cases will probably
only use one of once or loop.

Having neither once nor loop terminates an existing background looping write after exactly a whole loop.
This is in contrast to stop_background_write, which interrupts an ongoing DMA operation.

Parameters

• once (~Optional[circuitpython_typing.ReadableBuffer]) – Data to be written
once

• loop (~Optional[circuitpython_typing.ReadableBuffer]) – Data to be written
repeatedly

• swap (bool) – For 2- and 4-byte elements, swap (reverse) the byte order

stop_background_write()→ None
Immediately stop a background write, if one is in progress. Any DMA in progress is halted, but items
already in the TX FIFO are not affected.

property writing→ bool
Returns True if a background write is in progress

property pending→ int
Returns the number of pending buffers for background writing.

If the number is 0, then a StateMachine.background_write call will not block.

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: Optional[int] = None, swap:
bool = False)→ None

Read into buffer. If the number of bytes to read is 0, nothing happens. The buffer includes any data added
to the fifo even if it was added before this was called.

1.8. Full Table of Contents 187

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#memoryview.cast
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Reads from the FIFO will match the input buffer’s element size. For example, bytearray elements will per-
form 8 bit reads from the PIO FIFO. The alignment within the 32 bit value depends on in_shift_right.
When in_shift_right is True, the upper N bits will be read. The lower bits will be read when
in_shift_right is False.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size.

Parameters

• buffer (WriteableBuffer) – Read data into this buffer

• start (int) – Start of the slice of buffer to read into: buffer[start:end]

• end (int) – End of the slice; this index is not included. Defaults to len(buffer)

• swap (bool) – For 2- and 4-byte elements, swap (reverse) the byte order

write_readinto(buffer_out: circuitpython_typing.ReadableBuffer, buffer_in:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: Optional[int] = None,
in_start: int = 0, in_end: Optional[int] = None)→ None

Write out the data in buffer_out while simultaneously reading data into buffer_in. The lengths of
the slices defined by buffer_out[out_start:out_end] and buffer_in[in_start:in_end] may be
different. The function will return once both are filled. If buffer slice lengths are both 0, nothing happens.

Data transfers to and from the FIFOs will match the corresponding buffer’s element size. See write and
readinto for details.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size.

Parameters

• buffer_out (ReadableBuffer) – Write out the data in this buffer

• buffer_in (WriteableBuffer) – Read data into this buffer

• out_start (int) – Start of the slice of buffer_out to write out:
buffer_out[out_start:out_end]

• out_end (int) – End of the slice; this index is not included. Defaults to
len(buffer_out)

• in_start (int) – Start of the slice of buffer_in to read into:
buffer_in[in_start:in_end]

• in_end (int) – End of the slice; this index is not included. Defaults to len(buffer_in)

• swap_out (bool) – For 2- and 4-byte elements, swap (reverse) the byte order for the buffer
being transmitted (written)

• swap_in (bool) – For 2- and 4-rx elements, swap (reverse) the byte order for the buffer
being received (read)

clear_rxfifo()→ None
Clears any unread bytes in the rxfifo.

clear_txstall()→ None
Clears the txstall flag.

188 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

rtc – Real Time Clock

The rtc module provides support for a Real Time Clock. You can access and manage the RTC using rtc.RTC. It also
backs the time.time() and time.localtime() functions using the onboard RTC if present.

rtc.set_time_source(rtc: RTC)→ None
Sets the RTC time source used by time.localtime(). The default is rtc.RTC, but it’s useful to use this to
override the time source for testing purposes. For example:

import rtc
import time

class RTC(object):
@property
def datetime(self):

return time.struct_time((2018, 3, 17, 21, 1, 47, 0, 0, 0))

r = RTC()
rtc.set_time_source(r)

class rtc.RTC

Real Time Clock

This class represents the onboard Real Time Clock. It is a singleton and will always return the same instance.

datetime :time.struct_time

The current date and time of the RTC as a time.struct_time.

This must be set to the current date and time whenever the board loses power:

import rtc
import time

r = rtc.RTC()
r.datetime = time.struct_time((2019, 5, 29, 15, 14, 15, 0, -1, -1))

Once set, the RTC will automatically update this value as time passes. You can read this property to get a
snapshot of the current time:

current_time = r.datetime
print(current_time)
struct_time(tm_year=2019, tm_month=5, ...)

calibration :int

The RTC calibration value as an int.

A positive value speeds up the clock and a negative value slows it down. Range and value is hardware
specific, but one step is often approximately 1 ppm:

import rtc
import time

r = rtc.RTC()
r.calibration = 1

1.8. Full Table of Contents 189

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

samd – SAMD implementation settings

class samd.Clock

Identifies a clock on the microcontroller.

They are fixed by the hardware so they cannot be constructed on demand. Instead, use samd.clock to reference
the desired clock.

enabled :bool

Is the clock enabled? (read-only)

parent :Union[Clock, None]

Clock parent. (read-only)

frequency :int

Clock frequency in Herz. (read-only)

calibration :int

Clock calibration. Not all clocks can be calibrated.

sdcardio – Interface to an SD card via the SPI bus

class sdcardio.SDCard(bus: busio.SPI, cs: microcontroller.Pin, baudrate: int = 8000000)
SD Card Block Interface

Controls an SD card over SPI. This built-in module has higher read performance than the library adafruit_sdcard,
but it is only compatible with busio.SPI, not bitbangio.SPI. Usually an SDCard object is used with
storage.VfsFat to allow file I/O to an SD card.

Construct an SPI SD Card object with the given properties

Parameters

• spi (busio.SPI) – The SPI bus

• cs (microcontroller.Pin) – The chip select connected to the card

• baudrate (int) – The SPI data rate to use after card setup

Note that during detection and configuration, a hard-coded low baudrate is used. Data transfers use the specified
baurate (rounded down to one that is supported by the microcontroller)

Important: If the same SPI bus is shared with other peripherals, it is important that the SD card be initialized
before accessing any other peripheral on the bus. Failure to do so can prevent the SD card from being recognized
until it is powered off or re-inserted.

Example usage:

import os

import board
import sdcardio
import storage

sd = sdcardio.SDCard(board.SPI(), board.SD_CS)
vfs = storage.VfsFat(sd)

(continues on next page)

190 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

storage.mount(vfs, '/sd')
os.listdir('/sd')

count()→ int
Returns the total number of sectors

Due to technical limitations, this is a function and not a property.

Returns
The number of 512-byte blocks, as a number

deinit()→ None
Disable permanently.

Returns
None

readblocks(start_block: int, buf: circuitpython_typing.WriteableBuffer)→ None
Read one or more blocks from the card

Parameters

• start_block (int) – The block to start reading from

• buf (WriteableBuffer) – The buffer to write into. Length must be multiple of 512.

Returns
None

sync()→ None
Ensure all blocks written are actually committed to the SD card

Returns
None

writeblocks(start_block: int, buf: circuitpython_typing.ReadableBuffer)→ None
Write one or more blocks to the card

Parameters

• start_block (int) – The block to start writing from

• buf (ReadableBuffer) – The buffer to read from. Length must be multiple of 512.

Returns
None

sdioio – Interface to an SD card via the SDIO bus

class sdioio.SDCard(clock: microcontroller.Pin, command: microcontroller.Pin, data:
Sequence[microcontroller.Pin], frequency: int)

SD Card Block Interface with SDIO

Controls an SD card over SDIO. SDIO is a parallel protocol designed for SD cards. It uses a clock pin, a command
pin, and 1 or 4 data pins. It can be operated at a high frequency such as 25MHz. Usually an SDCard object is
used with storage.VfsFat to allow file I/O to an SD card.

Construct an SDIO SD Card object with the given properties

Parameters

1.8. Full Table of Contents 191

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• clock (Pin) – the pin to use for the clock.

• command (Pin) – the pin to use for the command.

• data – A sequence of pins to use for data.

• frequency – The frequency of the bus in Hz

Example usage:

import os

import board
import sdioio
import storage

sd = sdioio.SDCard(
clock=board.SDIO_CLOCK,
command=board.SDIO_COMMAND,
data=board.SDIO_DATA,
frequency=25000000)

vfs = storage.VfsFat(sd)
storage.mount(vfs, '/sd')
os.listdir('/sd')

configure(frequency: int = 0, width: int = 0)→ None
Configures the SDIO bus.

Parameters

• frequency (int) – the desired clock rate in Hertz. The actual clock rate may be higher
or lower due to the granularity of available clock settings. Check the frequency attribute
for the actual clock rate.

• width (int) – the number of data lines to use. Must be 1 or 4 and must also not exceed
the number of data lines at construction

Note: Leaving a value unspecified or 0 means the current setting is kept

count()→ int
Returns the total number of sectors

Due to technical limitations, this is a function and not a property.

Returns
The number of 512-byte blocks, as a number

readblocks(start_block: int, buf: circuitpython_typing.WriteableBuffer)→ None
Read one or more blocks from the card

Parameters

• start_block (int) – The block to start reading from

• buf (WriteableBuffer) – The buffer to write into. Length must be multiple of 512.

Returns
None

192 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

writeblocks(start_block: int, buf: circuitpython_typing.ReadableBuffer)→ None
Write one or more blocks to the card

Parameters

• start_block (int) – The block to start writing from

• buf (ReadableBuffer) – The buffer to read from. Length must be multiple of 512.

Returns
None

property frequency→ int
The actual SDIO bus frequency. This may not match the frequency requested due to internal limitations.

property width→ int
The actual SDIO bus width, in bits

deinit()→ None
Disable permanently.

Returns
None

__enter__()→ SDCard
No-op used by Context Managers. Provided by context manager helper.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

sharpdisplay – Support for Sharp Memory Display framebuffers

socketpool

The socketpool module provides sockets through a pool. The pools themselves act like CPython’s socket module.

For more information about the socket module, see the CPython documentation: https://docs.python.org/3/library/
socket.html

class socketpool.Socket

TCP, UDP and RAW socket. Cannot be created directly. Instead, call SocketPool.socket().

Provides a subset of CPython’s socket.socketAPI. It only implements the versions of recv that do not allocate
bytes objects.

__hash__()→ int
Returns a hash for the Socket.

__enter__()→ Socket
No-op used by Context Managers.

__exit__()→ None
Automatically closes the Socket when exiting a context. See Lifetime and ContextManagers for more info.

accept()→ Tuple[Socket, Tuple[str, int]]
Accept a connection on a listening socket of type SOCK_STREAM, creating a new socket of type
SOCK_STREAM. Returns a tuple of (new_socket, remote_address)

1.8. Full Table of Contents 193

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

bind(address: Tuple[str, int])→ None
Bind a socket to an address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

close()→ None
Closes this Socket and makes its resources available to its SocketPool.

connect(address: Tuple[str, int])→ None
Connect a socket to a remote address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

listen(backlog: int)→ None
Set socket to listen for incoming connections

Parameters
backlog (~int) – length of backlog queue for waiting connetions

recvfrom_into(buffer: circuitpython_typing.WriteableBuffer)→ Tuple[int, Tuple[str, int]]
Reads some bytes from a remote address.

Returns a tuple containing * the number of bytes received into the given buffer * a remote_address, which
is a tuple of ip address and port number

Parameters
buffer (object) – buffer to read into

recv_into(buffer: circuitpython_typing.WriteableBuffer, bufsize: int)→ int
Reads some bytes from the connected remote address, writing into the provided buffer. If bufsize <=
len(buffer) is given, a maximum of bufsize bytes will be read into the buffer. If no valid value is given for
bufsize, the default is the length of the given buffer.

Suits sockets of type SOCK_STREAM Returns an int of number of bytes read.

Parameters

• buffer (bytearray) – buffer to receive into

• bufsize (int) – optionally, a maximum number of bytes to read.

send(bytes: circuitpython_typing.ReadableBuffer)→ int
Send some bytes to the connected remote address. Suits sockets of type SOCK_STREAM

Parameters
bytes (~bytes) – some bytes to send

sendto(bytes: circuitpython_typing.ReadableBuffer, address: Tuple[str, int])→ int
Send some bytes to a specific address. Suits sockets of type SOCK_DGRAM

Parameters

• bytes (~bytes) – some bytes to send

• address (~tuple) – tuple of (remote_address, remote_port)

setblocking(flag: bool)→ Optional[int]
Set the blocking behaviour of this socket.

Parameters
flag (~bool) – False means non-blocking, True means block indefinitely.

194 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

settimeout(value: int)→ None
Set the timeout value for this socket.

Parameters
value (~int) – timeout in seconds. 0 means non-blocking. None means block indefinitely.

class socketpool.SocketPool

A pool of socket resources available for the given radio. Only one SocketPool can be created for each radio.

SocketPool should be used in place of CPython’s socket which provides a pool of sockets provided by the under-
lying OS.

AF_INET :int

AF_INET6 :int

SOCK_STREAM :int

SOCK_DGRAM :int

SOCK_RAW :int

socket(family: int = AF_INET, type: int = SOCK_STREAM)→ Socket
Create a new socket

Parameters

• family (~int) – AF_INET or AF_INET6

• type (~int) – SOCK_STREAM, SOCK_DGRAM or SOCK_RAW

The proto (protocol) and fileno arguments available in socket.socket() in CPython are not sup-
ported.

getaddrinfo(host: str, port: int, family: int = 0, type: int = 0, proto: int = 0, flags: int = 0)→ Tuple[int, int,
int, str, Tuple[str, int]]

Gets the address information for a hostname and port

Returns the appropriate family, socket type, socket protocol and address information to call socket.socket()
and socket.connect() with, as a tuple.

ssl

The ssl module provides SSL contexts to wrap sockets in.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: ssl.

ssl.create_default_context()→ SSLContext
Return the default SSLContext.

class ssl.SSLContext

Settings related to SSL that can be applied to a socket by wrapping it. This is useful to provide SSL certificates
to specific connections rather than all of them.

check_hostname :bool

Whether to match the peer certificate’s hostname.

1.8. Full Table of Contents 195

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/ssl.html#module-ssl

CircuitPython Documentation, Release 7.3.3

load_verify_locations(cadata: Optional[str] = None)→ None
Load a set of certification authority (CA) certificates used to validate other peers’ certificates.

set_default_verify_paths()→ None
Load a set of default certification authority (CA) certificates.

wrap_socket(sock: socketpool.Socket, *, server_side: bool = False, server_hostname: Optional[str] =
None)→ SSLSocket

Wraps the socket into a socket-compatible class that handles SSL negotiation. The socket must be of type
SOCK_STREAM.

class ssl.SSLSocket

Implements TLS security on a subset of socketpool.Socket functions. Cannot be created directly. Instead,
call wrap_socket on an existing socket object.

Provides a subset of CPython’s ssl.SSLSocket API. It only implements the versions of recv that do not allocate
bytes objects.

__hash__()→ int
Returns a hash for the Socket.

__enter__()→ SSLSocket
No-op used by Context Managers.

__exit__()→ None
Automatically closes the Socket when exiting a context. See Lifetime and ContextManagers for more info.

accept()→ Tuple[SSLSocket, Tuple[str, int]]
Accept a connection on a listening socket of type SOCK_STREAM, creating a new socket of type
SOCK_STREAM. Returns a tuple of (new_socket, remote_address)

bind(address: Tuple[str, int])→ None
Bind a socket to an address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

close()→ None
Closes this Socket

connect(address: Tuple[str, int])→ None
Connect a socket to a remote address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

listen(backlog: int)→ None
Set socket to listen for incoming connections

Parameters
backlog (~int) – length of backlog queue for waiting connetions

recv_into(buffer: circuitpython_typing.WriteableBuffer, bufsize: int)→ int
Reads some bytes from the connected remote address, writing into the provided buffer. If bufsize <=
len(buffer) is given, a maximum of bufsize bytes will be read into the buffer. If no valid value is given for
bufsize, the default is the length of the given buffer.

Suits sockets of type SOCK_STREAM Returns an int of number of bytes read.

Parameters

196 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

• buffer (bytearray) – buffer to receive into

• bufsize (int) – optionally, a maximum number of bytes to read.

send(bytes: circuitpython_typing.ReadableBuffer)→ int
Send some bytes to the connected remote address. Suits sockets of type SOCK_STREAM

Parameters
bytes (~bytes) – some bytes to send

settimeout(value: int)→ None
Set the timeout value for this socket.

Parameters
value (~int) – timeout in seconds. 0 means non-blocking. None means block indefinitely.

setblocking(flag: bool)→ Optional[int]
Set the blocking behaviour of this socket.

Parameters
flag (~bool) – False means non-blocking, True means block indefinitely.

storage – Storage management

The storage provides storage management functionality such as mounting and unmounting which is typically handled
by the operating system hosting Python. CircuitPython does not have an OS, so this module provides this functionality
directly. For more information regarding using the storagemodule, refer to the CircuitPython Essentials Learn guide.

storage.mount(filesystem: VfsFat, mount_path: str, *, readonly: bool = False)→ None
Mounts the given filesystem object at the given path.

This is the CircuitPython analog to the UNIX mount command.

Parameters

• filesystem (VfsFat) – The filesystem to mount.

• mount_path (str) – Where to mount the filesystem.

• readonly (bool) – True when the filesystem should be readonly to CircuitPython.

storage.umount(mount: Union[str, VfsFat])→ None
Unmounts the given filesystem object or if mount is a path, then unmount the filesystem mounted at that location.

This is the CircuitPython analog to the UNIX umount command.

storage.remount(mount_path: str, readonly: bool = False, *, disable_concurrent_write_protection: bool =
False)→ None

Remounts the given path with new parameters.

Parameters

• mount_path (str) – The path to remount.

• readonly (bool) – True when the filesystem should be readonly to CircuitPython.

• disable_concurrent_write_protection (bool) – When True, the check that makes
sure the underlying filesystem data is written by one computer is disabled. Disabling the
protection allows CircuitPython and a host to write to the same filesystem with the risk that
the filesystem will be corrupted.

1.8. Full Table of Contents 197

https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/circuitpython-essentials/circuitpython-storage
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

storage.getmount(mount_path: str)→ VfsFat
Retrieves the mount object associated with the mount path

storage.erase_filesystem()→ None
Erase and re-create the CIRCUITPY filesystem.

On boards that present USB-visible CIRCUITPY drive (e.g., SAMD21 and SAMD51), then call
microcontroller.reset() to restart CircuitPython and have the host computer remount CIRCUITPY.

This function can be called from the REPL when CIRCUITPY has become corrupted.

Warning: All the data on CIRCUITPY will be lost, and CircuitPython will restart on certain boards.

storage.disable_usb_drive()→ None
Disable presenting CIRCUITPY as a USB mass storage device. By default, the device is enabled and CIRCUITPY
is visible. Can be called in boot.py, before USB is connected.

storage.enable_usb_drive()→ None
Enabled presenting CIRCUITPY as a USB mass storage device. By default, the device is enabled and CIRCUITPY
is visible, so you do not normally need to call this function. Can be called in boot.py, before USB is connected.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not enough
endpoints are available.

class storage.VfsFat(block_device: str)
Create a new VfsFat filesystem around the given block device.

Parameters
block_device – Block device the the filesystem lives on

label :str

The filesystem label, up to 11 case-insensitive bytes. Note that this property can only be set when the device
is writable by the microcontroller.

mkfs()→ None
Format the block device, deleting any data that may have been there

open(path: str, mode: str)→ None
Like builtin open()

ilistdir(path: str)→ Iterator[Union[Tuple[AnyStr, int, int, int], Tuple[AnyStr, int, int]]]
Return an iterator whose values describe files and folders within path

mkdir(path: str)→ None
Like os.mkdir

rmdir(path: str)→ None
Like os.rmdir

stat(path: str)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Like os.stat

statvfs(path: int)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Like os.statvfs

198 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

mount(readonly: bool, mkfs: VfsFat)→ None
Don’t call this directly, call storage.mount.

umount()→ None
Don’t call this directly, call storage.umount.

struct – Manipulation of c-style data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: struct.

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, x, h, H, i, I, l, L, q, Q, s, P, f, d (the latter 2 depending on the floating-point support).

struct.calcsize(fmt: str)→ int
Return the number of bytes needed to store the given fmt.

struct.pack(fmt: str, *values: Any)→ bytes
Pack the values according to the format string fmt. The return value is a bytes object encoding the values.

struct.pack_into(fmt: str, buffer: circuitpython_typing.WriteableBuffer, offset: int, *values: Any)→ None
Pack the values according to the format string fmt into a buffer starting at offset. offset may be negative to count
from the end of buffer.

struct.unpack(fmt: str, data: circuitpython_typing.ReadableBuffer)→ Tuple[Any, Ellipsis]
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked values. The
buffer size must match the size required by the format.

struct.unpack_from(fmt: str, data: circuitpython_typing.ReadableBuffer, offset: int = 0)→ Tuple[Any, Ellipsis]
Unpack from the data starting at offset according to the format string fmt. offset may be negative to count from
the end of buffer. The return value is a tuple of the unpacked values. The buffer size must be at least as big as
the size required by the form.

supervisor – Supervisor settings

supervisor.runtime :Runtime

Runtime information, such as runtime.serial_connected (USB serial connection status). This object is the
sole instance of supervisor.Runtime.

supervisor.enable_autoreload()→ None
Enable autoreload based on USB file write activity.

supervisor.disable_autoreload()→ None
Disable autoreload based on USB file write activity until enable_autoreload is called.

supervisor.set_rgb_status_brightness(brightness: int)→ None
Set brightness of status RGB LED from 0-255. This will take effect after the current code finishes and the status
LED is used to show the finish state.

supervisor.reload()→ None
Reload the main Python code and run it (equivalent to hitting Ctrl-D at the REPL).

supervisor.set_next_stack_limit(size: int)→ None
Set the size of the stack for the next vm run. If its too large, the default will be used.

1.8. Full Table of Contents 199

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/struct.html#module-struct
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

supervisor.set_next_code_file(filename: Optional[str], *, reload_on_success: bool = False,
reload_on_error: bool = False, sticky_on_success: bool = False,
sticky_on_error: bool = False, sticky_on_reload: bool = False)→ None

Set what file to run on the next vm run.

When not None, the given filename is inserted at the front of the usual [‘code.py’, ‘main.py’] search sequence.

The optional keyword arguments specify what happens after the specified file has run:

sticky_on_... determine whether the newly set filename and options stay in effect: If True, further runs will
continue to run that file (unless it says otherwise by calling set_next_code_filename() itself). If False, the
settings will only affect one run and revert to the standard code.py/main.py afterwards.

reload_on_... determine how to continue: If False, wait in the usual “Code done running. Waiting for reload.
/ Press any key to enter the REPL. Use CTRL-D to reload.” state. If True, reload immediately as if CTRL-D was
pressed.

..._on_success take effect when the program runs to completion or calls sys.exit().

..._on_error take effect when the program exits with an exception, including the KeyboardInterrupt caused
by CTRL-C.

..._on_reload take effect when the program is interrupted by files being written to the USB drive (auto-reload)
or when it calls supervisor.reload().

These settings are stored in RAM, not in persistent memory, and will therefore only affect soft reloads. Powering
off or resetting the device will always revert to standard settings.

When called multiple times in the same run, only the last call takes effect, replacing any settings made by previous
ones. This is the main use of passing None as a filename: to reset to the standard search sequence.

supervisor.ticks_ms()→ int
Return the time in milliseconds since an unspecified reference point, wrapping after 2**29ms.

The value is initialized so that the first overflow occurs about 65 seconds after power-on, making it feasible to
check that your program works properly around an overflow.

The wrap value was chosen so that it is always possible to add or subtract two ticks_ms values without overflow
on a board without long ints (or without allocating any long integer objects, on boards with long ints).

This ticks value comes from a low-accuracy clock internal to the microcontroller, just like time.monotonic.
Due to its low accuracy and the fact that it “wraps around” every few days, it is intended for working with short
term events like advancing an LED animation, not for long term events like counting down the time until a
holiday.

Addition, subtraction, and comparison of ticks values can be done with routines like the following:

_TICKS_PERIOD = const(1<<29)
_TICKS_MAX = const(_TICKS_PERIOD-1)
_TICKS_HALFPERIOD = const(_TICKS_PERIOD//2)

def ticks_add(ticks, delta):
"Add a delta to a base number of ticks, performing wraparound at 2**29ms."
return (a + b) % _TICKS_PERIOD

def ticks_diff(ticks1, ticks2):
"Compute the signed difference between two ticks values, assuming that they are␣

→˓within 2**28 ticks"
diff = (ticks1 - ticks2) & _TICKS_MAX
diff = ((diff + _TICKS_HALFPERIOD) & _TICKS_MAX) - _TICKS_HALFPERIOD

(continues on next page)

200 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

return diff

def ticks_less(ticks1, ticks2):
"Return true iff ticks1 is less than ticks2, assuming that they are within␣

→˓2**28 ticks"
return ticks_diff(ticks1, ticks2) < 0

supervisor.get_previous_traceback()→ Optional[str]
If the last vm run ended with an exception (including the KeyboardInterrupt caused by CTRL-C), returns the
traceback as a string. Otherwise, returns None.

An exception traceback is only preserved over a soft reload, a hard reset clears it.

Only code (main or boot) runs are considered, not REPL runs.

supervisor.disable_ble_workflow()→ None
Disable ble workflow until a reset. This prevents BLE advertising outside of the VM and the services used for it.

supervisor.reset_terminal(x_pixels: int, y_pixels: int)→ None
Reset the CircuitPython serial terminal with new dimensions.

class supervisor.RunReason

The reason that CircuitPython started running.

STARTUP :object

CircuitPython started the microcontroller started up. See microcontroller.Processor.
reset_reason for more detail on why the microcontroller was started.

AUTO_RELOAD :object

CircuitPython restarted due to an external write to the filesystem.

SUPERVISOR_RELOAD :object

CircuitPython restarted due to a call to supervisor.reload().

REPL_RELOAD :object

CircuitPython started due to the user typing CTRL-D in the REPL.

class supervisor.Runtime

Current status of runtime objects.

Usage:

import supervisor
if supervisor.runtime.serial_connected:

print("Hello World!")

You cannot create an instance of supervisor.Runtime. Use supervisor.runtime to access the sole instance
available.

usb_connected :bool

Returns the USB enumeration status (read-only).

serial_connected :bool

Returns the USB serial communication status (read-only).

1.8. Full Table of Contents 201

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

serial_bytes_available :int

Returns the whether any bytes are available to read on the USB serial input. Allows for polling to see
whether to call the built-in input() or wait. (read-only)

run_reason :RunReason

Returns why CircuitPython started running this particular time.

synthio – Support for MIDI synthesis

synthio.from_file(file: BinaryIO, *, sample_rate: int = 11025)→ MidiTrack
Create an AudioSample from an already opened MIDI file. Currently, only single-track MIDI (type 0) is sup-
ported.

Parameters

• file (BinaryIO) – Already opened MIDI file

• sample_rate (int) – The desired playback sample rate; higher sample rate requires more
memory

Playing a MIDI file from flash:

import audioio
import board
import synthio

data = open("single-track.midi", "rb")
midi = synthio.from_file(data)
a = audioio.AudioOut(board.A0)

print("playing")
a.play(midi)
while a.playing:
pass

print("stopped")

class synthio.MidiTrack(buffer: circuitpython_typing.ReadableBuffer, tempo: int, *, sample_rate: int =
11025)

Simple square-wave MIDI synth

Create a MidiTrack from the given stream of MIDI events. Only “Note On” and “Note Off” events are supported;
channel numbers and key velocities are ignored. Up to two notes may be on at the same time.

Parameters

• buffer (ReadableBuffer) – Stream of MIDI events, as stored in a MIDI file track chunk

• tempo (int) – Tempo of the streamed events, in MIDI ticks per second

• sample_rate (int) – The desired playback sample rate; higher sample rate requires more
memory

Simple melody:

import audioio
import board
import synthio

(continues on next page)

202 Chapter 1. CircuitPython

https://docs.python.org/3/library/typing.html#typing.BinaryIO

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

dac = audioio.AudioOut(board.SPEAKER)
melody = synthio.MidiTrack(b"\0\x90H\0*\x80H\0\6\x90J\0*\x80J\0\6\x90L\0*\x80L\0\6\
→˓x90J\0" +

b"*\x80J\0\6\x90H\0*\x80H\0\6\x90J\0*\x80J\0\6\x90L\0T\
→˓x80L\0" +

b"\x0c\x90H\0T\x80H\0\x0c\x90H\0T\x80H\0", tempo=640)
dac.play(melody)
print("playing")
while dac.playing:
pass

print("stopped")

sample_rate :Optional[int]

32 bit value that tells how quickly samples are played in Hertz (cycles per second).

deinit()→ None
Deinitialises the MidiTrack and releases any hardware resources for reuse.

__enter__()→ MidiTrack
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

terminalio – Displays text in a TileGrid

The terminalio module contains classes to display a character stream on a display. The built in font is available as
terminalio.FONT.

Note: This module does not give access to the REPL.

terminalio.FONT :fontio.BuiltinFont

The built in font

class terminalio.Terminal(tilegrid: displayio.TileGrid, font: fontio.BuiltinFont)
Display a character stream with a TileGrid

Terminal manages tile indices and cursor position based on VT100 commands. The font should be a fontio.
BuiltinFont and the TileGrid’s bitmap should match the font’s bitmap.

write(buf: circuitpython_typing.ReadableBuffer)→ Optional[int]
Write the buffer of bytes to the bus.

Returns
the number of bytes written

Return type
int or None

1.8. Full Table of Contents 203

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

CircuitPython Documentation, Release 7.3.3

time – time and timing related functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: time.

time.monotonic()→ float
Returns an always increasing value of time with an unknown reference point. Only use it to compare against
other values from time.monotonic().

On most boards, time.monotonic() converts a 64-bit millisecond tick counter to a float. Floats on most boards
are encoded in 30 bits internally, with effectively 22 bits of precision. The float returned by time.monotonic()
will accurately represent time to millisecond precision only up to 2**22 milliseconds (about 1.165 hours). At that
point it will start losing precision, and its value will change only every second millisecond. At 2**23 milliseconds
it will change every fourth millisecond, and so forth.

If you need more consistent precision, use time.monotonic_ns(), or supervisor.ticks_ms(). time.
monotonic_ns() is not available on boards without long integer support. supervisor.ticks_ms() uses
intervals of a millisecond, but wraps around, and is not CPython-compatible.

Returns
the current monotonic time

Return type
float

time.sleep(seconds: float)→ None
Sleep for a given number of seconds.

Parameters
seconds (float) – the time to sleep in fractional seconds

class time.struct_time(time_tuple: Sequence[int])
Structure used to capture a date and time. Can be constructed from a struct_time, tuple, list, or
namedtuple with 9 elements.

Parameters
time_tuple (Sequence) – Sequence of time info: (tm_year, tm_mon, tm_mday,
tm_hour, tm_min, tm_sec, tm_wday, tm_yday, tm_isdst)

• tm_year: the year, 2017 for example

• tm_mon: the month, range [1, 12]

• tm_mday: the day of the month, range [1, 31]

• tm_hour: the hour, range [0, 23]

• tm_min: the minute, range [0, 59]

• tm_sec: the second, range [0, 61]

• tm_wday: the day of the week, range [0, 6], Monday is 0

• tm_yday: the day of the year, range [1, 366], -1 indicates not known

• tm_isdst: 1 when in daylight savings, 0 when not, -1 if unknown.

time.time()→ int
Return the current time in seconds since since Jan 1, 1970.

Returns
the current time

204 Chapter 1. CircuitPython

https://docs.python.org/3/library/time.html#module-time
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Return type
int

time.monotonic_ns()→ int
Return the time of the monotonic clock, which cannot go backward, in nanoseconds. Not available on boards
without long integer support.

Returns
the current time

Return type
int

time.localtime(secs: int)→ struct_time
Convert a time expressed in seconds since Jan 1, 1970 to a struct_time in local time. If secs is not provided or
None, the current time as returned by time() is used. The earliest date for which it can generate a time is Jan 1,
2000.

Returns
the current time

Return type
time.struct_time

time.mktime(t: struct_time)→ int
This is the inverse function of localtime(). Its argument is the struct_time or full 9-tuple (since the dst flag is
needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC. The earliest date
for which it can generate a time is Jan 1, 2000.

Returns
seconds

Return type
int

touchio – Touch related IO

The touchio module contains classes to provide access to touch IO typically accelerated by hardware on the onboard
microcontroller.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import touchio
from board import *

touch_pin = touchio.TouchIn(D6)
print(touch_pin.value)

This example will initialize the the device, and print the value.

class touchio.TouchIn(pin: microcontroller.Pin)
Read the state of a capacitive touch sensor

Usage:

1.8. Full Table of Contents 205

CircuitPython Documentation, Release 7.3.3

import touchio
from board import *

touch = touchio.TouchIn(A1)
while True:

if touch.value:
print("touched!")

Use the TouchIn on the given pin.

Parameters
pin (Pin) – the pin to read from

value :bool

Whether the touch pad is being touched or not. (read-only)

True when raw_value > threshold .

raw_value :int

The raw touch measurement as an int. (read-only)

threshold :Optional[int]

Minimum raw_value needed to detect a touch (and for value to be True).

When the TouchIn object is created, an initial raw_value is read from the pin, and then threshold is set
to be 100 + that value.

You can adjust threshold to make the pin more or less sensitive:

import board
import touchio

touch = touchio.TouchIn(board.A1)
touch.threshold = 7300

deinit()→ None
Deinitialises the TouchIn and releases any hardware resources for reuse.

__enter__()→ TouchIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

traceback – Traceback Module

This module provides a standard interface to print stack traces of programs. This is useful when you want to print stack
traces under program control.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: traceback.

traceback.format_exception(etype: Type[BaseException], value: BaseException, tb: types.TracebackType,
limit: Optional[int] = None, chain: Optional[bool] = True)→ None

206 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/traceback.html#module-traceback
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

Format a stack trace and the exception information.

The arguments have the same meaning as the corresponding arguments to print_exception(). The return value is a
list of strings, each ending in a newline and some containing internal newlines. When these lines are concatenated
and printed, exactly the same text is printed as does print_exception().

Note: Setting chain will have no effect as chained exceptions are not yet implemented.

Parameters

• etype (Type[BaseException]) – This is ignored and inferred from the type of value.

• value (BaseException) – The exception. Must be an instance of BaseException.

• tb (TracebackType) – The traceback object. If None, the traceback will not be printed.

• limit (int) – Print up to limit stack trace entries (starting from the caller’s frame) if limit
is positive. Otherwise, print the last abs(limit) entries. If limit is omitted or None, all
entries are printed.

• chain (bool) – If True then chained exceptions will be printed (note: not yet implemented).

traceback.print_exception(etype: Type[BaseException], value: BaseException, tb: types.TracebackType,
limit: Optional[int] = None, file: Optional[io.FileIO] = None, chain:
Optional[bool] = True)→ None

Prints exception information and stack trace entries.

Note: Setting chain will have no effect as chained exceptions are not yet implemented.

Parameters

• etype (Type[BaseException]) – This is ignored and inferred from the type of value.

• value (BaseException) – The exception. Must be an instance of BaseException.

• tb (TracebackType) – The traceback object. If None, the traceback will not be printed.

• limit (int) – Print up to limit stack trace entries (starting from the caller’s frame) if limit
is positive. Otherwise, print the last abs(limit) entries. If limit is omitted or None, all
entries are printed.

• file (io.FileIO) – If file is omitted or None, the output goes to sys.stderr; otherwise
it should be an open file or file-like object to receive the output.

• chain (bool) – If True then chained exceptions will be printed (note: not yet implemented).

1.8. Full Table of Contents 207

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True

CircuitPython Documentation, Release 7.3.3

uheap – Heap size analysis

uheap.info(object: info.object)→ int
Prints memory debugging info for the given object and returns the estimated size.

ulab – Manipulate numeric data similar to numpy

ulab is a numpy-like module for micropython, meant to simplify and speed up common mathematical operations
on arrays. The primary goal was to implement a small subset of numpy that might be useful in the context of a
microcontroller. This means low-level data processing of linear (array) and two-dimensional (matrix) data.

ulab is adapted from micropython-ulab, and the original project’s documentation can be found at https://
micropython-ulab.readthedocs.io/en/latest/

ulab is modeled after numpy, and aims to be a compatible subset where possible. Numpy’s documentation can be
found at https://docs.scipy.org/doc/numpy/index.html

ulab.numpy – Numerical approximation methods

ulab.numpy.carray – Return the real part of the complex argument, which can be either an ndarray,
or a scalar.

ulab.numpy.carray.real(val)

ulab.numpy.carray.imag(val)
Return the imaginary part of the complex argument, which can be either an ndarray, or a scalar.

ulab.numpy.carray.conjugate(val)
Return the conjugate of the complex argument, which can be either an ndarray, or a scalar.

ulab.numpy.carray.sort_complex(a: ulab.numpy.ndarray)→ ulab.numpy.ndarray
Sort a complex array using the real part first, then the imaginary part. Always returns a sorted complex array,
even if the input was real.

ulab.numpy.carray.abs(a: ulab.numpy.ndarray)→ ulab.numpy.ndarray
Return the absolute value of complex ndarray.

ulab.numpy.fft – Frequency-domain functions

ulab.numpy.fft.fft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None)→
Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters

• r (ulab.numpy.ndarray) – A 1-dimension array of values whose size is a power of 2

• c (ulab.numpy.ndarray) – An optional 1-dimension array of values whose size is a power
of 2, giving the complex part of the value

Return tuple (r, c)
The real and complex parts of the FFT

208 Chapter 1. CircuitPython

https://micropython-ulab.readthedocs.io/en/latest/
https://micropython-ulab.readthedocs.io/en/latest/
https://docs.scipy.org/doc/numpy/index.html

CircuitPython Documentation, Release 7.3.3

Perform a Fast Fourier Transform from the time domain into the frequency domain

See also ~ulab.extras.spectrum, which computes the magnitude of the fft, rather than separately returning its real
and imaginary parts.

ulab.numpy.fft.ifft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None)→
Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters

• r (ulab.numpy.ndarray) – A 1-dimension array of values whose size is a power of 2

• c (ulab.numpy.ndarray) – An optional 1-dimension array of values whose size is a power
of 2, giving the complex part of the value

Return tuple (r, c)
The real and complex parts of the inverse FFT

Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain

ulab.numpy.linalg

ulab.numpy.linalg.cholesky(A: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters
A (ndarray) – a positive definite, symmetric square matrix

Return ~ulab.numpy.ndarray L
a square root matrix in the lower triangular form

Raises
ValueError – If the input does not fulfill the necessary conditions

The returned matrix satisfies the equation m=LL*

ulab.numpy.linalg.det(m: ulab.numpy.ndarray)→ float

Param
m, a square matrix

Return float
The determinant of the matrix

Computes the eigenvalues and eigenvectors of a square matrix

ulab.numpy.linalg.eig(m: ulab.numpy.ndarray)→ Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters
m – a square matrix

Return tuple (eigenvectors, eigenvalues)

Computes the eigenvalues and eigenvectors of a square matrix

ulab.numpy.linalg.inv(m: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters
m (ndarray) – a square matrix

Returns
The inverse of the matrix, if it exists

1.8. Full Table of Contents 209

CircuitPython Documentation, Release 7.3.3

Raises
ValueError – if the matrix is not invertible

Computes the inverse of a square matrix

ulab.numpy.linalg.norm(x: ulab.numpy.ndarray)→ float

Parameters
x (ndarray) – a vector or a matrix

Computes the 2-norm of a vector or a matrix, i.e., sqrt(sum(x*x)), however, without the RAM overhead.

ulab.numpy.linalg.qr(m: ulab.numpy.ndarray)→ Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters
m – a matrix

Return tuple (Q, R)

Factor the matrix a as QR, where Q is orthonormal and R is upper-triangular.

ulab.numpy.interp(x: ndarray, xp: ndarray, fp: ndarray, *, left: Optional[_float] = None, right: Optional[_float]
= None)→ ndarray

Parameters

• x (ulab.numpy.ndarray) – The x-coordinates at which to evaluate the interpolated values.

• xp (ulab.numpy.ndarray) – The x-coordinates of the data points, must be increasing

• fp (ulab.numpy.ndarray) – The y-coordinates of the data points, same length as xp

• left – Value to return for x < xp[0], default is fp[0].

• right – Value to return for x > xp[-1], default is fp[-1].

Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp),
evaluated at x.

ulab.numpy.trapz(y: ndarray, x: Optional[ndarray] = None, dx: _float = 1.0)→ _float

Parameters

• y (1D ulab.numpy.ndarray) – the values of the dependent variable

• x (1D ulab.numpy.ndarray) – optional, the coordinates of the independent variable. De-
faults to uniformly spaced values.

• dx (float) – the spacing between sample points, if x=None

Returns the integral of y(x) using the trapezoidal rule.

ulab.numpy.arange(stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float)→ ndarray
ulab.numpy.arange(start: _float, stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float)→ ndarray

Return a new 1-D array with elements ranging from start to stop, with step size step.

ulab.numpy.concatenate(arrays: Tuple[ndarray], *, axis: int = 0)→ ndarray
Join a sequence of arrays along an existing axis.

ulab.numpy.diag(a: ndarray, *, k: int = 0)→ ndarray
Return specified diagonals.

ulab.numpy.empty(shape: Union[int, Tuple[int, Ellipsis]], *, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new array of the given shape with all elements set to 0. An alias for numpy.zeros.

210 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

ulab.numpy.eye(size: int, *, M: Optional[int] = None, k: int = 0, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new square array of size, with the diagonal elements set to 1 and the other elements set to 0. If k is
given, the diagonal is shifted by the specified amount.

ulab.numpy.full(shape: Union[int, Tuple[int, Ellipsis]], fill_value: Union[_float, _bool], *, dtype: _DType =
ulab.numpy.float)→ ndarray

Return a new array of the given shape with all elements set to 0.

ulab.numpy.linspace(start: _float, stop: _float, *, dtype: _DType = ulab.numpy.float, num: int = 50, endpoint:
_bool = True, retstep: _bool = False)→ ndarray

Return a new 1-D array with num elements ranging from start to stop linearly.

ulab.numpy.logspace(start: _float, stop: _float, *, dtype: _DType = ulab.numpy.float, num: int = 50, endpoint:
_bool = True, base: _float = 10.0)→ ndarray

Return a new 1-D array with num evenly spaced elements on a log scale. The sequence starts at base ** start,
and ends with base ** stop.

ulab.numpy.ones(shape: Union[int, Tuple[int, Ellipsis]], *, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new array of the given shape with all elements set to 1.

ulab.numpy.zeros(shape: Union[int, Tuple[int, Ellipsis]], *, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new array of the given shape with all elements set to 0.

ulab.numpy._ArrayLike

ulab.numpy._DType

ulab.numpy.int8, ulab.numpy.uint8, ulab.numpy.int16, ulab.numpy.uint16, ulab.numpy.float
or ulab.numpy.bool

ulab.numpy.int8 :_DType

Type code for signed integers in the range -128 .. 127 inclusive, like the ‘b’ typecode of array.array

ulab.numpy.int16 :_DType

Type code for signed integers in the range -32768 .. 32767 inclusive, like the ‘h’ typecode of array.array

ulab.numpy.float :_DType

Type code for floating point values, like the ‘f’ typecode of array.array

ulab.numpy.uint8 :_DType

Type code for unsigned integers in the range 0 .. 255 inclusive, like the ‘H’ typecode of array.array

ulab.numpy.uint16 :_DType

Type code for unsigned integers in the range 0 .. 65535 inclusive, like the ‘h’ typecode of array.array

ulab.numpy.bool :_DType

Type code for boolean values

ulab.numpy.argmax(array: _ArrayLike, *, axis: Optional[int] = None)→ int
Return the index of the maximum element of the 1D array

ulab.numpy.argmin(array: _ArrayLike, *, axis: Optional[int] = None)→ int
Return the index of the minimum element of the 1D array

ulab.numpy.argsort(array: ndarray, *, axis: int = -1)→ ndarray
Returns an array which gives indices into the input array from least to greatest.

ulab.numpy.cross(a: ndarray, b: ndarray)→ ndarray
Return the cross product of two vectors of length 3

1.8. Full Table of Contents 211

CircuitPython Documentation, Release 7.3.3

ulab.numpy.diff(array: ndarray, *, n: int = 1, axis: int = -1)→ ndarray
Return the numerical derivative of successive elements of the array, as an array. axis=None is not supported.

ulab.numpy.flip(array: ndarray, *, axis: Optional[int] = None)→ ndarray
Returns a new array that reverses the order of the elements along the given axis, or along all axes if axis is None.

ulab.numpy.max(array: _ArrayLike, *, axis: Optional[int] = None)→ float
Return the maximum element of the 1D array

ulab.numpy.mean(array: _ArrayLike, *, axis: Optional[int] = None)→ float
Return the mean element of the 1D array, as a number if axis is None, otherwise as an array.

ulab.numpy.median(array: ndarray, *, axis: int = -1)→ ndarray
Find the median value in an array along the given axis, or along all axes if axis is None.

ulab.numpy.min(array: _ArrayLike, *, axis: Optional[int] = None)→ float
Return the minimum element of the 1D array

ulab.numpy.roll(array: ndarray, distance: int, *, axis: Optional[int] = None)→ None
Shift the content of a vector by the positions given as the second argument. If the axis keyword is supplied, the
shift is applied to the given axis. The array is modified in place.

ulab.numpy.sort(array: ndarray, *, axis: int = -1)→ ndarray
Sort the array along the given axis, or along all axes if axis is None. The array is modified in place.

ulab.numpy.std(array: _ArrayLike, *, axis: Optional[int] = None, ddof: int = 0)→ float
Return the standard deviation of the array, as a number if axis is None, otherwise as an array.

ulab.numpy.sum(array: _ArrayLike, *, axis: Optional[int] = None)→ Union[float, int, ndarray]
Return the sum of the array, as a number if axis is None, otherwise as an array.

class ulab.numpy.ndarray

ulab.numpy.get_printoptions()→ Dict[str, int]
Get printing options

ulab.numpy.set_printoptions(threshold: Optional[int] = None, edgeitems: Optional[int] = None)→ None
Set printing options

ulab.numpy.ndinfo(array: ndarray)→ None

ulab.numpy.array(values: Union[ndarray, Iterable[Union[float, bool, Iterable[Any]]]], *, dtype: _DType =
ulab.numpy.float)→ ndarray

alternate constructor function for ulab.numpy.ndarray. Mirrors numpy.array

ulab.numpy.trace(m: ndarray)→ float

Parameters
m – a square matrix

Compute the trace of the matrix, the sum of its diagonal elements.

ulab.numpy.dot(m1: ndarray, m2: ndarray)→ Union[ndarray, float]

Parameters

• m1 (ndarray) – a matrix, or a vector

• m2 (ndarray) – a matrix, or a vector

Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned.

212 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

ulab.numpy.acos(a: _ArrayLike)→ ndarray
Computes the inverse cosine function

ulab.numpy.acosh(a: _ArrayLike)→ ndarray
Computes the inverse hyperbolic cosine function

ulab.numpy.asin(a: _ArrayLike)→ ndarray
Computes the inverse sine function

ulab.numpy.asinh(a: _ArrayLike)→ ndarray
Computes the inverse hyperbolic sine function

ulab.numpy.around(a: _ArrayLike, *, decimals: int = 0)→ ndarray
Returns a new float array in which each element is rounded to decimals places.

ulab.numpy.atan(a: _ArrayLike)→ ndarray
Computes the inverse tangent function; the return values are in the range [-pi/2,pi/2].

ulab.numpy.arctan2(ya: _ArrayLike, xa: _ArrayLike)→ ndarray
Computes the inverse tangent function of y/x; the return values are in the range [-pi, pi].

ulab.numpy.atanh(a: _ArrayLike)→ ndarray
Computes the inverse hyperbolic tangent function

ulab.numpy.ceil(a: _ArrayLike)→ ndarray
Rounds numbers up to the next whole number

ulab.numpy.cos(a: _ArrayLike)→ ndarray
Computes the cosine function

ulab.numpy.cosh(a: _ArrayLike)→ ndarray
Computes the hyperbolic cosine function

ulab.numpy.degrees(a: _ArrayLike)→ ndarray
Converts angles from radians to degrees

ulab.numpy.erf(a: _ArrayLike)→ ndarray
Computes the error function, which has applications in statistics

ulab.numpy.erfc(a: _ArrayLike)→ ndarray
Computes the complementary error function, which has applications in statistics

ulab.numpy.exp(a: _ArrayLike)→ ndarray
Computes the exponent function.

ulab.numpy.expm1(a: _ArrayLike)→ ndarray
Computes e^x-1. In certain applications, using this function preserves numeric accuracy better than the exp
function.

ulab.numpy.floor(a: _ArrayLike)→ ndarray
Rounds numbers up to the next whole number

ulab.numpy.gamma(a: _ArrayLike)→ ndarray
Computes the gamma function

ulab.numpy.lgamma(a: _ArrayLike)→ ndarray
Computes the natural log of the gamma function

1.8. Full Table of Contents 213

CircuitPython Documentation, Release 7.3.3

ulab.numpy.log(a: _ArrayLike)→ ndarray
Computes the natural log

ulab.numpy.log10(a: _ArrayLike)→ ndarray
Computes the log base 10

ulab.numpy.log2(a: _ArrayLike)→ ndarray
Computes the log base 2

ulab.numpy.radians(a: _ArrayLike)→ ndarray
Converts angles from degrees to radians

ulab.numpy.sin(a: _ArrayLike)→ ndarray
Computes the sine function

ulab.numpy.sinh(a: _ArrayLike)→ ndarray
Computes the hyperbolic sine

ulab.numpy.sqrt(a: _ArrayLike)→ ndarray
Computes the square root

ulab.numpy.tan(a: _ArrayLike)→ ndarray
Computes the tangent

ulab.numpy.tanh(a: _ArrayLike)→ ndarray
Computes the hyperbolic tangent

ulab.numpy.vectorize(f: Union[Callable[[int], float], Callable[[float], float]], *, otypes: Optional[_DType] =
None)→ Callable[[_ArrayLike], ndarray]

Parameters

• f (callable) – The function to wrap

• otypes – List of array types that may be returned by the function. None is interpreted to
mean the return value is float.

Wrap a Python function f so that it can be applied to arrays. The callable must return only values of the types
specified by otypes, or the result is undefined.

ulab.scipy – Compatibility layer for scipy

ulab.scipy.linalg

ulab.scipy.linalg.solve_triangular(A: ulab.numpy.ndarray, b: ulab.numpy.ndarray, lower: bool)→
ulab.numpy.ndarray

Parameters

• A (ndarray) – a matrix

• b (ndarray) – a vector

• lower (~bool) – if true, use only data contained in lower triangle of A, else use upper
triangle of A

Returns
solution to the system A x = b. Shape of return matches b

214 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Raises

• TypeError – if A and b are not of type ndarray and are not dense

• ValueError – if A is a singular matrix

Solve the equation A x = b for x, assuming A is a triangular matrix

ulab.scipy.linalg.cho_solve(L: ulab.numpy.ndarray, b: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters

• L (ndarray) – the lower triangular, Cholesky factorization of A

• b (ndarray) – right-hand-side vector b

Returns
solution to the system A x = b. Shape of return matches b

Raises
TypeError – if L and b are not of type ndarray and are not dense

Solve the linear equations A x = b, given the Cholesky factorization of A as input

ulab.scipy.optimize

ulab.scipy.optimize.bisect(fun: Callable[[float], float], a: float, b: float, *, xtol: float = 2.4e-07, maxiter: int
= 100)→ float

Parameters

• f (callable) – The function to bisect

• a (float) – The left side of the interval

• b (float) – The right side of the interval

• xtol (float) – The tolerance value

• maxiter (float) – The maximum number of iterations to perform

Find a solution (zero) of the function f(x) on the interval (a..``b``) using the bisection method. The result is
accurate to within xtol unless more than maxiter steps are required.

ulab.scipy.optimize.fmin(fun: Callable[[float], float], x0: float, *, xatol: float = 2.4e-07, fatol: float =
2.4e-07, maxiter: int = 200)→ float

Parameters

• f (callable) – The function to bisect

• x0 (float) – The initial x value

• xatol (float) – The absolute tolerance value

• fatol (float) – The relative tolerance value

Find a minimum of the function f(x) using the downhill simplex method. The located x is within fxtol of the
actual minimum, and f(x) is within fatol of the actual minimum unless more than maxiter steps are requried.

ulab.scipy.optimize.newton(fun: Callable[[float], float], x0: float, *, xtol: float = 2.4e-07, rtol: float = 0.0,
maxiter: int = 50)→ float

Parameters

1.8. Full Table of Contents 215

CircuitPython Documentation, Release 7.3.3

• f (callable) – The function to bisect

• x0 (float) – The initial x value

• xtol (float) – The absolute tolerance value

• rtol (float) – The relative tolerance value

• maxiter (float) – The maximum number of iterations to perform

Find a solution (zero) of the function f(x) using Newton’s Method. The result is accurate to within xtol *
rtol * |f(x)| unless more than maxiter steps are requried.

ulab.scipy.signal

ulab.scipy.signal.spectrogram(r: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters
r (ulab.numpy.ndarray) – A 1-dimension array of values whose size is a power of 2

Computes the spectrum of the input signal. This is the absolute value of the (complex-valued) fft of the signal.
This function is similar to scipy’s scipy.signal.spectrogram.

ulab.user – This module should hold arbitrary user-defined functions.

usb – PyUSB-compatible USB host API

The usb is a subset of PyUSB that allows you to communicate to USB devices.

usb.core – USB Core

This is a subset of the PyUSB core module.

exception usb.core.USBError

Bases: OSError

Catchall exception for USB related errors.

Initialize self. See help(type(self)) for accurate signature.

exception usb.core.USBTimeoutError

Bases: USBError

Raised when a USB transfer times out.

Initialize self. See help(type(self)) for accurate signature.

usb.core.find(find_all=False, *, idVendor=None, idProduct=None)
Find the first device that matches the given requirements or, if find_all is True, return a generator of all matching
devices.

Returns None if no device matches.

class usb.core.Device

User code cannot create Device objects. Instead, get them from usb.core.find .

216 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

idVendor :int

The USB vendor ID of the device

idProduct :int

The USB product ID of the device

serial_number :str

The USB device’s serial number string.

product :str

The USB device’s product string.

manufacturer :str

The USB device’s manufacturer string.

write(endpoint: int, data: circuitpython_typing.ReadableBuffer, timeout=None)→ int
Write data to a specific endpoint on the device.

Parameters

• endpoint (int) – the bEndpointAddress you want to communicate with.

• data (ReadableBuffer) – the data to send

• timeout (int) – Time to wait specified in milliseconds. (Different from most Circuit-
Python!)

Returns
the number of bytes written

read(endpoint: int, size_or_buffer: array.array, timeout=None)→ int
Read data from the endpoint.

Parameters

• endpoint (int) – the bEndpointAddress you want to communicate with.

• size_or_buffer (array.array) – the array to read data into. PyUSB also allows size
but CircuitPython only support array to force deliberate memory use.

• timeout (int) – Time to wait specified in milliseconds. (Different from most Circuit-
Python!)

Returns
the number of bytes read

ctrl_transfer(bmRequestType, bRequest, wValue=0, wIndex=0, data_or_wLength: array.array = None,
timeout=None)→ int

Do a control transfer on the endpoint 0. The parameters bmRequestType, bRequest, wValue and wIndex
are the same of the USB Standard Control Request format.

Control requests may or may not have a data payload to write/read. In cases which it has, the direction bit
of the bmRequestType field is used to infer the desired request direction.

For host to device requests (OUT), data_or_wLength parameter is the data payload to send, and it must be
a sequence type convertible to an array object. In this case, the return value is the number of bytes written
in the data payload.

For device to host requests (IN), data_or_wLength is an array object which the data will be read to, and the
return value is the number of bytes read.

1.8. Full Table of Contents 217

CircuitPython Documentation, Release 7.3.3

is_kernel_driver_active(interface: int)→ bool
Determine if CircuitPython is using the interface. If it is, the object will be unable to perform I/O.

Parameters
interface (int) – the device interface number to check

detach_kernel_driver(interface: int)
Stop CircuitPython from using the interface. If successful, you will then be able to perform I/O. Circuit-
Python will automatically re-start using the interface on reload.

Parameters
interface (int) – the device interface number to stop CircuitPython on

attach_kernel_driver(interface: int)
Allow CircuitPython to use the interface if it wants to.

Parameters
interface (int) – the device interface number to allow CircuitPython to use

usb_cdc – USB CDC Serial streams

The usb_cdc module allows access to USB CDC (serial) communications.

On Windows, each Serial is visible as a separate COM port. The ports will often be assigned consecutively, console
first, but this is not always true.

On Linux, the ports are typically /dev/ttyACM0 and /dev/ttyACM1. The console port will usually be first.

On MacOS, the ports are typically /dev/cu.usbmodem<something>. The something varies based on the USB bus
and port used. The console port will usually be first.

usb_cdc.console :Optional[Serial]

The console Serial object is used for the REPL, and for sys.stdin and sys.stdout.
console is None if disabled.

However, note that sys.stdin and sys.stdout are text-based streams, and the console object is a binary
stream. You do not normally need to write to console unless you want to write binary data.

usb_cdc.data :Optional[Serial]

A Serial object that can be used to send and receive binary data to and from the host. Note that data is disabled
by default. data is None if disabled.

usb_cdc.disable()→ None
Do not present any USB CDC device to the host. Can be called in boot.py, before USB is connected. Equivalent
to usb_cdc.enable(console=False, data=False).

usb_cdc.enable(*, console: bool = True, data: bool = False)→ None
Enable or disable each CDC device. Can be called in boot.py, before USB is connected.

Parameters

• bool (data) – Enable or disable the console USB serial device. True to enable; False to
disable. Enabled by default.

• bool – Enable or disable the data USB serial device. True to enable; False to disable.
Disabled by default.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not enough
endpoints are available.

218 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

class usb_cdc.Serial

Receives cdc commands over USB

You cannot create an instance of usb_cdc.Serial. The available instances are in the usb_cdc.serials tuple.

connected :bool

True if this Serial is connected to a host. (read-only)

Note: The host is considered to be connected if it is asserting DTR (Data Terminal Ready). Most terminal
programs and pyserial assert DTR when opening a serial connection. However, the C# SerialPort
API does not. You must set SerialPort.DtrEnable.

in_waiting :int

Returns the number of bytes waiting to be read on the USB serial input. (read-only)

out_waiting :int

Returns the number of bytes waiting to be written on the USB serial output. (read-only)

timeout :Optional[float]

The initial value of timeout is None. If None, wait indefinitely to satisfy the conditions of a read operation.
If 0, do not wait. If > 0, wait only timeout seconds.

write_timeout :Optional[float]

The initial value of write_timeout is None. If None, wait indefinitely to finish writing all the bytes passed
to write().If 0, do not wait. If > 0, wait only write_timeout seconds.

read(size: int = 1)→ bytes
Read at most size bytes. If size exceeds the internal buffer size only the bytes in the buffer will be read.
If timeout is > 0 or None, and fewer than size bytes are available, keep waiting until the timeout expires
or size bytes are available.

Returns
Data read

Return type
bytes

readinto(buf: circuitpython_typing.WriteableBuffer)→ int
Read bytes into the buf. If nbytes is specified then read at most that many bytes, subject to timeout.
Otherwise, read at most len(buf) bytes.

Returns
number of bytes read and stored into buf

Return type
bytes

readline(size: int = -1)→ Optional[bytes]
Read a line ending in a newline character (”\n”), including the newline. Return everything readable if no
newline is found and timeout is 0. Return None in case of error.

This is a binary stream: the newline character “\n” cannot be changed. If the host computer transmits “\r”
it will also be included as part of the line.

Parameters
size (int) – maximum number of characters to read. -1 means as many as possible.

1.8. Full Table of Contents 219

CircuitPython Documentation, Release 7.3.3

Returns
the line read

Return type
bytes or None

readlines()→ List[Optional[bytes]]
Read multiple lines as a list, using readline().

Warning: If timeout is None, readlines() will never return, because there is no way to indicate
end of stream.

Returns
a list of the line read

Return type
list

write(buf: circuitpython_typing.ReadableBuffer)→ int
Write as many bytes as possible from the buffer of bytes.

Returns
the number of bytes written

Return type
int

flush()→ None
Force out any unwritten bytes, waiting until they are written.

reset_input_buffer()→ None
Clears any unread bytes.

reset_output_buffer()→ None
Clears any unwritten bytes.

usb_hid – USB Human Interface Device

The usb_hid module allows you to output data as a HID device.

usb_hid.devices :Tuple[Device, Ellipsis]

Tuple of all active HID device interfaces. The default set of devices is Device.KEYBOARD, Device.MOUSE,
Device.CONSUMER_CONTROL, On boards where usb_hid is disabled by default, devices is an empty tuple.

If a boot device is enabled by usb_hid.enable(), and the host has requested a boot device, the devices tuple
is replaced when code.py starts with a single-element tuple containing a Device that describes the boot device
chosen (keyboard or mouse). The request for a boot device overrides any other HID devices.

usb_hid.disable()→ None
Do not present any USB HID devices to the host computer. Can be called in boot.py, before USB is connected.
The HID composite device is normally enabled by default, but on some boards with limited endpoints, including
STM32F4, it is disabled by default. You must turn off another USB device such as usb_cdc or storage to free
up endpoints for use by usb_hid .

220 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

usb_hid.enable(devices: Optional[Sequence[Device]], boot_device: int = 0)→ None
Specify which USB HID devices that will be available. Can be called in boot.py, before USB is connected.

Parameters

• devices (Sequence) – Device objects. If devices is empty, HID is disabled. The order of
the Devices may matter to the host. For instance, for MacOS, put the mouse device before
any Gamepad or Digitizer HID device or else it will not work.

• boot_device (int) – If non-zero, inform the host that support for a a boot HID device
is available. If boot_device=1, a boot keyboard is available. If boot_device=2, a boot
mouse is available. No other values are allowed. See below.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not
enough endpoints are available.

Boot Devices

Boot devices implement a fixed, predefined report descriptor, defined in https://www.usb.org/sites/default/files/
hid1_12.pdf, Appendix B. A USB host can request to use the boot device if the USB device says it is available.
Usually only a BIOS or other kind of limited-functionality host needs boot keyboard support.

For example, to make a boot keyboard available, you can use this code:

usb_hid.enable((Device.KEYBOARD), boot_device=1) # 1 for a keyboard

If the host requests the boot keyboard, the report descriptor provided by Device.KEYBOARD will be ignored, and
the predefined report descriptor will be used. But if the host does not request the boot keyboard, the descriptor
provided by Device.KEYBOARD will be used.

The HID boot device must usually be the first or only device presented by CircuitPython. The HID device will
be USB interface number 0. To make sure it is the first device, disable other USB devices, including CDC and
MSC (CIRCUITPY). If you specify a non-zero boot_device, and it is not the first device, CircuitPython will
enter safe mode to report this error.

usb_hid.get_boot_device()→ int

Returns
the boot device requested by the host, if any. Returns 0 if the host did not request a boot device,
or if usb_hid.enable() was called with boot_device=0, the default, which disables boot
device support. If the host did request a boot device, returns the value of boot_device set in
usb_hid.enable(): 1 for a boot keyboard, or 2 for boot mouse. However, the standard devices
provided by CircuitPython, Device.KEYBOARD and Device.MOUSE, describe reports that match
the boot device reports, so you don’t need to check this if you are using those devices.

Rtype int

class usb_hid.Device(*, report_descriptor: circuitpython_typing.ReadableBuffer, usage_page: int, usage: int,
report_ids: Sequence[int], in_report_lengths: Sequence[int], out_report_lengths:
Sequence[int])

HID Device specification

Create a description of a USB HID device. The actual device is created when you pass a Device to usb_hid.
enable().

Parameters

• report_descriptor (ReadableBuffer) – The USB HID Report descriptor bytes. The
descriptor is not not verified for correctness; it is up to you to make sure it is not malformed.

1.8. Full Table of Contents 221

https://docs.python.org/3/library/constants.html#None
https://www.usb.org/sites/default/files/hid1_12.pdf
https://www.usb.org/sites/default/files/hid1_12.pdf

CircuitPython Documentation, Release 7.3.3

• usage_page (int) – The Usage Page value from the descriptor. Must match what is in the
descriptor.

• usage (int) – The Usage value from the descriptor. Must match what is in the descriptor.

• report_ids (Sequence[int]) – Sequence of report ids used by the descriptor. If the
report_descriptor does not specify any report IDs, use (0,).

• in_report_lengths (Sequence[int]) – Sequence of sizes in bytes of the HID reports
sent to the host. The sizes are in order of the report_ids. Use a size of 0 for a report that
is not an IN report. “IN” is with respect to the host.

• out_report_lengths (int) – Sequence of sizes in bytes of the HID reports received from
the host. The sizes are in order of the report_ids. Use a size of 0 for a report that is not
an OUT report. “OUT” is with respect to the host.

report_ids, in_report_lengths, and out_report_lengths must all have the same number of elements.

Here is an example of a Device with a descriptor that specifies two report IDs, 3 and 4. Report ID 3 sends an
IN report of length 5, and receives an OUT report of length 6. Report ID 4 sends an IN report of length 2, and
does not receive an OUT report:

device = usb_hid.Device(
descriptor=b"...", # Omitted for brevity.
report_ids=(3, 4),
in_report_lengths=(5, 2),
out_report_lengths=(6, 0),

)

KEYBOARD :Device

Standard keyboard device supporting keycodes 0x00-0xDD, modifiers 0xE-0xE7, and five LED indicators.
Uses Report ID 1 for its IN and OUT reports.

MOUSE :Device

Standard mouse device supporting five mouse buttons, X and Y relative movements from -127 to 127 in
each report, and a relative mouse wheel change from -127 to 127 in each report. Uses Report ID 2 for its
IN report.

CONSUMER_CONTROL :Device

Consumer Control device supporting sent values from 1-652, with no rollover. Uses Report ID 3 for its IN
report.

last_received_report :bytes

The HID OUT report as a bytes (read-only). None if nothing received. Same as
get_last_received_report() with no argument.

Deprecated: will be removed in CircutPython 8.0.0. Use get_last_received_report() instead.

usage_page :int

The device usage page identifier, which designates a category of device. (read-only)

usage :int

The device usage identifier, which designates a specific kind of device. (read-only)

For example, Keyboard is 0x06 within the generic desktop usage page 0x01. Mouse is 0x02 within the
same usage page.

222 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

send_report(buf: circuitpython_typing.ReadableBuffer, report_id: Optional[int] = None)→ None
Send an HID report. If the device descriptor specifies zero or one report id’s, you can supply None (the
default) as the value of report_id. Otherwise you must specify which report id to use when sending the
report.

get_last_received_report(report_id: Optional[int] = None)→ Optional[bytes]
Get the last received HID OUT or feature report for the given report ID. The report ID may be omitted
if there is no report ID, or only one report ID. Return None if nothing received. After returning a report,
subsequent calls will return None until next report is received.

usb_host – USB Host

The usb_host module allows you to manage USB host ports. To communicate with devices use the usb module that
is a subset of PyUSB’s API.

class usb_host.Port(dp: microcontroller.Pin, dm: microcontroller.Pin)
USB host port. Also known as a root hub port.

Create a USB host port on the given pins. Access attached devices through the usb module. Keep this object
referenced while interacting with devices, otherwise they will be disconnected.

Parameters

• dp (Pin) – The data plus pin

• dm (Pin) – The data minus pin

deinit()→ None
Turn off the USB host port and release the pins for other use.

__enter__()→ Port
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

usb_midi – MIDI over USB

The usb_midi module contains classes to transmit and receive MIDI messages over USB.

usb_midi.ports :Tuple[Union[PortIn, PortOut], Ellipsis]

Tuple of all MIDI ports. Each item is ether PortIn or PortOut.

usb_midi.disable()→ None
Disable presenting a USB MIDI device to the host. The device is normally enabled by default, but on some
boards with limited endpoints including ESP32-S2 and certain STM boards, it is disabled by default. Can be
called in boot.py, before USB is connected.

usb_midi.enable()→ None
Enable presenting a USB MIDI device to the host. The device is enabled by default, so you do not normally need
to call this function. Can be called in boot.py, before USB is connected.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not enough
endpoints are available.

1.8. Full Table of Contents 223

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

class usb_midi.PortIn

Receives midi commands over USB

You cannot create an instance of usb_midi.PortIn.

PortIn objects are constructed for every corresponding entry in the USB descriptor and added to the usb_midi.
ports tuple.

read(nbytes: Optional[int] = None)→ Optional[bytes]
Read characters. If nbytes is specified then read at most that many bytes. Otherwise, read everything
that arrives until the connection times out. Providing the number of bytes expected is highly recommended
because it will be faster.

Returns
Data read

Return type
bytes or None

readinto(buf: circuitpython_typing.WriteableBuffer, nbytes: Optional[int] = None)→ Optional[bytes]
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len(buf) bytes.

Returns
number of bytes read and stored into buf

Return type
bytes or None

class usb_midi.PortOut

Sends midi messages to a computer over USB

You cannot create an instance of usb_midi.PortOut.

PortOut objects are constructed for every corresponding entry in the USB descriptor and added to the usb_midi.
ports tuple.

write(buf: circuitpython_typing.ReadableBuffer)→ Optional[int]
Write the buffer of bytes to the bus.

Returns
the number of bytes written

Return type
int or None

ustack – Stack information and analysis

ustack.max_stack_usage()→ int
Return the maximum excursion of the stack so far.

ustack.stack_size()→ int
Return the size of the entire stack. Same as in micropython.mem_info(), but returns a value instead of just
printing it.

ustack.stack_usage()→ int
Return how much stack is currently in use. Same as micropython.stack_use(); duplicated here for convenience.

224 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

vectorio – Lightweight 2D shapes for displays

The vectorio module provide simple filled drawing primitives for use with displayio.

group = displayio.Group()

palette = displayio.Palette(1)
palette[0] = 0x125690

circle = vectorio.Circle(pixel_shader=palette, radius=25, x=70, y=40)
group.append(circle)

rectangle = vectorio.Rectangle(pixel_shader=palette, width=40, height=30, x=55, y=45)
group.append(rectangle)

points=[(5, 5), (100, 20), (20, 20), (20, 100)]
polygon = vectorio.Polygon(pixel_shader=palette, points=points, x=0, y=0)
group.append(polygon)

class vectorio.Circle(pixel_shader: Union[displayio.ColorConverter, displayio.Palette], radius: int, x: int, y:
int)

Circle is positioned on screen by its center point.

Parameters

• pixel_shader (Union[ColorConverter,Palette]) – The pixel shader that produces
colors from values

• radius (int) – The radius of the circle in pixels

• x (int) – Initial x position of the axis.

• y (int) – Initial y position of the axis.

• color_index (int) – Initial color_index to use when selecting color from the palette.

radius :int

The radius of the circle in pixels.

color_index :int

The color_index of the circle as 0 based index of the palette.

x :int

X position of the center point of the circle in the parent.

y :int

Y position of the center point of the circle in the parent.

location :Tuple[int, int]

(X,Y) position of the center point of the circle in the parent.

pixel_shader :Union[displayio.ColorConverter, displayio.Palette]

The pixel shader of the circle.

class vectorio.Polygon(pixel_shader: Union[displayio.ColorConverter, displayio.Palette], points:
List[Tuple[int, int]], x: int, y: int)

Represents a closed shape by ordered vertices. The path will be treated as ‘closed’, the last point will connect to
the first point.

1.8. Full Table of Contents 225

CircuitPython Documentation, Release 7.3.3

Parameters

• pixel_shader (Union[ColorConverter,Palette]) – The pixel shader that produces
colors from values

• points (List[Tuple[int,int]]) – Vertices for the polygon

• x (int) – Initial screen x position of the 0,0 origin in the points list.

• y (int) – Initial screen y position of the 0,0 origin in the points list.

• color_index (int) – Initial color_index to use when selecting color from the palette.

points :List[Tuple[int, int]]

Vertices for the polygon.

color_index :int

The color_index of the polygon as 0 based index of the palette.

x :int

X position of the 0,0 origin in the points list.

y :int

Y position of the 0,0 origin in the points list.

location :Tuple[int, int]

(X,Y) position of the 0,0 origin in the points list.

pixel_shader :Union[displayio.ColorConverter, displayio.Palette]

The pixel shader of the polygon.

class vectorio.Rectangle(pixel_shader: Union[displayio.ColorConverter, displayio.Palette], width: int,
height: int, x: int, y: int)

Represents a rectangle by defining its bounds

Parameters

• pixel_shader (Union[ColorConverter,Palette]) – The pixel shader that produces
colors from values

• width (int) – The number of pixels wide

• height (int) – The number of pixels high

• x (int) – Initial x position of the top left corner.

• y (int) – Initial y position of the top left corner.

• color_index (int) – Initial color_index to use when selecting color from the palette.

width :int

The width of the rectangle in pixels.

height :int

The height of the rectangle in pixels.

color_index :int

The color_index of the rectangle in 1 based index of the palette.

x :int

X position of the top left corner of the rectangle in the parent.

226 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

y :int

Y position of the top left corner of the rectangle in the parent.

location :Tuple[int, int]

(X,Y) position of the top left corner of the rectangle in the parent.

pixel_shader :Union[displayio.ColorConverter, displayio.Palette]

The pixel shader of the rectangle.

watchdog – Watchdog Timer

The watchdog module provides support for a Watchdog Timer. This timer will reset the device if it hasn’t been fed
after a specified amount of time. This is useful to ensure the board has not crashed or locked up. Note that on some
platforms the watchdog timer cannot be disabled once it has been enabled.

The WatchDogTimer is used to restart the system when the application crashes and ends up into a non recoverable
state. Once started it cannot be stopped or reconfigured in any way. After enabling, the application must “feed” the
watchdog periodically to prevent it from expiring and resetting the system.

Example usage:

from microcontroller import watchdog as w
from watchdog import WatchDogMode
w.timeout=2.5 # Set a timeout of 2.5 seconds
w.mode = WatchDogMode.RAISE
w.feed()

exception watchdog.WatchDogTimeout

Bases: Exception

Exception raised when the watchdog timer is set to WatchDogMode.RAISE and expires.

Example:

import microcontroller
import watchdog
import time

wdt = microcontroller.watchdog
wdt.timeout = 5

while True:
wdt.mode = watchdog.WatchDogMode.RAISE
print("Starting loop -- should exit after five seconds")
try:

while True:
time.sleep(10) # Also works with pass

except watchdog.WatchDogTimeout as e:
print("Watchdog expired")

except Exception as e:
print("Other exception")

print("Exited loop")

Initialize self. See help(type(self)) for accurate signature.

1.8. Full Table of Contents 227

CircuitPython Documentation, Release 7.3.3

class watchdog.WatchDogMode

run state of the watchdog timer

Enum-like class to define the run mode of the watchdog timer.

RAISE :WatchDogMode

Raise an exception when the WatchDogTimer expires.

RESET :WatchDogMode

Reset the system if the WatchDogTimer expires.

class watchdog.WatchDogTimer

Timer that is used to detect code lock ups and automatically reset the microcontroller when one is detected.

A lock up is detected when the watchdog hasn’t been fed after a given duration. So, make sure to call feed
within the timeout.

Not currently dynamically supported. Access the sole instance through microcontroller.watchdog.

timeout :float

The maximum number of seconds that can elapse between calls to feed()

mode :WatchDogMode

The current operating mode of the WatchDogTimer watchdog.WatchDogMode.

Setting a WatchDogMode activates the WatchDog:

import microcontroller
import watchdog

w = microcontroller.watchdog
w.timeout = 5
w.mode = watchdog.WatchDogMode.RAISE

Once set, the WatchDogTimer will perform the specified action if the timer expires.

feed()→ None
Feed the watchdog timer. This must be called regularly, otherwise the timer will expire.

deinit()→ None
Stop the watchdog timer. This may raise an error if the watchdog timer cannot be disabled on this platform.

wifi

The wifi module provides necessary low-level functionality for managing wifi connections. Use socketpool for
communicating over the network.

wifi.radio :Radio

Wifi radio used to manage both station and AP modes. This object is the sole instance of wifi.Radio.

class wifi.AuthMode

The authentication protocols used by WiFi.

228 Chapter 1. CircuitPython

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

OPEN :object

Open network. No authentication required.

WEP :object

Wired Equivalent Privacy.

WPA :object

Wireless Protected Access.

WPA2 :object

Wireless Protected Access 2.

WPA3 :object

Wireless Protected Access 3.

PSK :object

Pre-shared Key. (password)

ENTERPRISE :object

Each user has a unique credential.

class wifi.Monitor

For monitoring WiFi packets.

wifi.__init__(self, channel: Optional[int] = 1, queue: Optional[int] = 128)→ None
Initialize wifi.Monitor singleton.

Parameters

• channel (int) – The WiFi channel to scan.

• queue (int) – The queue size for buffering the packet.

wifi.channel :int

The WiFi channel to scan.

wifi.queue :int

The queue size for buffering the packet.

wifi.deinit(self)→ None
De-initialize wifi.Monitor singleton.

wifi.lost(self)→ int
Returns the packet loss count. The counter resets after each poll.

wifi.queued(self)→ int
Returns the packet queued count.

wifi.packet(self)→ dict
Returns the monitor packet.

class wifi.Network

A wifi network provided by a nearby access point.

You cannot create an instance of wifi.Network . They are returned by wifi.Radio.
start_scanning_networks.

ssid :str

String id of the network

1.8. Full Table of Contents 229

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

bssid :bytes

BSSID of the network (usually the AP’s MAC address)

rssi :int

Signal strength of the network

channel :int

Channel number the network is operating on

country :str

String id of the country code

authmode :str

String id of the authmode

class wifi.Packet

The packet parameters.

CH :object

The packet’s channel.

LEN :object

The packet’s length.

RAW :object

The packet’s payload.

RSSI :object

The packet’s rssi.

class wifi.Radio

Native wifi radio.

This class manages the station and access point functionality of the native Wifi radio.

You cannot create an instance of wifi.Radio. Use wifi.radio to access the sole instance available.

enabled :bool

True when the wifi radio is enabled. If you set the value to False, any open sockets will be closed.

hostname :Union[str | ReadableBuffer]

Hostname for wifi interface. When the hostname is altered after interface started/connected the changes
would only be reflected once the interface restarts/reconnects.

mac_address :circuitpython_typing.ReadableBuffer

MAC address for the station. When the address is altered after interface is connected the changes would
only be reflected once the interface reconnects.

mac_address_ap :circuitpython_typing.ReadableBuffer

MAC address for the AP. When the address is altered after interface is started the changes would only be
reflected once the interface restarts.

ipv4_gateway :Optional[ipaddress.IPv4Address]

IP v4 Address of the station gateway when connected to an access point. None otherwise.

ipv4_gateway_ap :Optional[ipaddress.IPv4Address]

IP v4 Address of the access point gateway, when enabled. None otherwise.

230 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

ipv4_subnet :Optional[ipaddress.IPv4Address]

IP v4 Address of the station subnet when connected to an access point. None otherwise.

ipv4_subnet_ap :Optional[ipaddress.IPv4Address]

IP v4 Address of the access point subnet, when enabled. None otherwise.

ipv4_address :Optional[ipaddress.IPv4Address]

IP v4 Address of the station when connected to an access point. None otherwise.

ipv4_address_ap :Optional[ipaddress.IPv4Address]

IP v4 Address of the access point, when enabled. None otherwise.

ipv4_dns :Optional[ipaddress.IPv4Address]

IP v4 Address of the DNS server in use when connected to an access point. None otherwise.

ap_info :Optional[Network]

Network object containing BSSID, SSID, authmode, channel, country and RSSI when connected to an
access point. None otherwise.

start_scanning_networks(*, start_channel: int = 1, stop_channel: int = 11)→ Iterable[Network]
Scans for available wifi networks over the given channel range. Make sure the channels are allowed in your
country.

stop_scanning_networks()→ None
Stop scanning for Wifi networks and free any resources used to do it.

start_station()→ None
Starts a Station.

stop_station()→ None
Stops the Station.

start_ap(ssid: Union[str | ReadableBuffer], password: Union[str | ReadableBuffer] = '', *, channel:
Optional[int] = 1, authmode: Optional[AuthMode], max_connections: Optional[int] = 4)→
None

Starts an Access Point with the specified ssid and password.

If channel is given, the access point will use that channel unless a station is already operating on a different
channel.

If authmode is given, the access point will use that Authentication mode. If a password is given, authmode
must not be OPEN. If authmode isn’t given, OPEN will be used when password isn’t provided, otherwise
WPA_WPA2_PSK.

If max_connections is given, the access point will allow up to that number of stations to connect.

stop_ap()→ None
Stops the Access Point.

connect(ssid: Union[str | ReadableBuffer], password: Union[str | ReadableBuffer] = '', *, channel:
Optional[int] = 0, bssid: Optional[Union[str | ReadableBuffer]] = '', timeout: Optional[float] =
None)→ None

Connects to the given ssid and waits for an ip address. Reconnections are handled automatically once one
connection succeeds.

By default, this will scan all channels and connect to the access point (AP) with the given ssid and greatest
signal strength (rssi).

If channel is given, the scan will begin with the given channel and connect to the first AP with the given
ssid. This can speed up the connection time significantly because a full scan doesn’t occur.

1.8. Full Table of Contents 231

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 7.3.3

If bssid is given, the scan will start at the first channel or the one given and connect to the AP with the
given bssid and ssid.

ping(ip: ipaddress.IPv4Address, *, timeout: Optional[float] = 0.5)→ Optional[float]
Ping an IP to test connectivity. Returns echo time in seconds. Returns None when it times out.

class wifi.ScannedNetworks

Iterates over all wifi.Network objects found while scanning. This object is always created by a wifi.Radio:
it has no user-visible constructor.

Cannot be instantiated directly. Use wifi.Radio.start_scanning_networks.

__iter__()→ Iterator[Network]
Returns itself since it is the iterator.

__next__()→ Network
Returns the next wifi.Network . Raises StopIteration if scanning is finished and no other results are
available.

zlib – zlib decompression functionality

The zlib module allows limited functionality similar to the CPython zlib library. This module allows to decompress
binary data compressed with DEFLATE algorithm (commonly used in zlib library and gzip archiver). Compression is
not yet implemented.

zlib.zlib_decompress(data: bytes, wbits: Optional[int] = 0, bufsize: Optional[int] = 0)→ bytes
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-15,
the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be zlib stream
(with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE stream.

The wbits parameter controls the size of the history buffer (or “window size”), and what header and trailer format
is expected.

Common wbits values:

• To decompress deflate format, use wbits = -15

• To decompress zlib format, use wbits = 15

• To decompress gzip format, use wbits = 31

Parameters

• data (bytes) – data to be decompressed

• wbits (int) – DEFLATE dictionary window size used during compression. See above.

• bufsize (int) – ignored for compatibility with CPython only

232 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

help() – Built-in method to provide helpful information

help(object=None)
Prints a help method about the given object. When object is none, prints general port information.

1.8.2 Supported Ports

CircuitPython supports a number of microcontroller families. Support quality for each varies depending on the active
contributors for each port.

Adafruit sponsored developers are actively contributing to atmel-samd, mimxrt10xx, nrf and stm ports. They also
maintain the other ports in order to ensure the boards build. Additional testing is limited.

SAMD21 and SAMD51

This port supports many development boards that utilize SAMD21 and SAMD51 chips. See https://circuitpython.org/
downloads for all supported boards.

Building

For build instructions see this guide: https://learn.adafruit.com/building-circuitpython/

Debugging

For debugging instructions see this guide: https://learn.adafruit.com/debugging-the-samd21-with-gdb

Port Specific modules

CircuitPython port to Spresense

This directory contains the port of CircuitPython to Spresense. It is a compact development board based on Sony’s
power-efficient multicore microcontroller CXD5602.

Board features:

• Integrated GPS

– The embedded GNSS with support for GPS, QZSS and GLONASS enables applications where tracking is
required.

• Hi-res audio output and multi mic inputs

– Advanced 192kHz/24 bit audio codec and amplifier for audio output, and support for up to 8 mic input
channels.

• Multicore microcontroller

– Spresense is powered by Sony’s CXD5602 microcontroller (ARM® Cortex®-M4F × 6 cores), with a clock
speed of 156 MHz.

Currently, Spresense port does not support Audio and Multicore.

Refer to developer.sony.com/develop/spresense/ for further information about this board.

1.8. Full Table of Contents 233

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://learn.adafruit.com/building-circuitpython/
https://learn.adafruit.com/debugging-the-samd21-with-gdb
https://developer.sony.com/develop/spresense/

CircuitPython Documentation, Release 7.3.3

Prerequisites

Linux

Add user to dialout group:

$ sudo usermod -a -G dialout <user-name>

Windows

Download and install USB serial driver

• CP210x USB to serial driver for Windows 7/8/8.1

• CP210x USB to serial driver for Windows 10

macOS

Download and install USB serial driver

• CP210x USB to serial driver for Mac OS X

Build instructions

Pull all submodules into your clone:

$ git submodule update --init --recursive

Build the MicroPython cross-compiler:

$ make -C mpy-cross

Change directory to cxd56:

$ cd ports/cxd56

To build circuitpython image run:

$ make BOARD=spresense

USB connection

Connect the Spresense main board to the PC via the USB cable.

234 Chapter 1. CircuitPython

https://www.silabs.com/documents/public/software/CP210x_Windows_Drivers.zip
https://www.silabs.com/documents/public/software/CP210x_Universal_Windows_Driver.zip
https://www.silabs.com/documents/public/software/Mac_OSX_VCP_Driver.zip

CircuitPython Documentation, Release 7.3.3

Flash the bootloader

The correct bootloader is required for the Spresense board to function.

Bootloader information:

• The bootloader has to be flashed the very first time the board is used.

• You have to accept the End User License Agreement to be able to download and use the Spresense bootloader
binary.

Download the spresense binaries zip archive from: Spresense firmware v2-3-000

Extract spresense binaries in your PC to ports/spresense/spresense-exported-sdk/firmware/

To flash the bootloader run the command:

$ make BOARD=spresense flash-bootloader

Flash the circuitpython image

To flash the firmware run the command:

$ make BOARD=spresense flash

Accessing the board

Connect the Spresense extension board to the PC via the USB cable.

Once built and deployed, access the CircuitPython REPL (the Python prompt) via USB. You can run:

$ screen /dev/ttyACM0 115200

CircuitPython on Espressif SoCs

This port adds the Espressif line of SoCs to CircuitPython.

Support Status:

SoC Status
ESP32-C3 beta
ESP32-S2 stable
ESP32-S3 beta

1.8. Full Table of Contents 235

https://developer.sony.com/file/download/download-spresense-firmware-v2-3-000

CircuitPython Documentation, Release 7.3.3

How this port is organized:

• bindings/ contains some required bindings to the ESP-IDF for exceptions and memory.

• boards/ contains the configuration files for each development board and breakout available on the port.

• common-hal/ contains the port-specific module implementations, used by shared-module and shared-bindings.

• esp-idf/ contains the Espressif IoT Development Framework installation, including all the drivers for the port.

• modules/ contains information specific to certain Espressif SoC based hardware modules, such as the pins used
for flash and RAM on the WROVER and WROOM.

• peripherals/ contains peripheral setup files and peripheral mapping information, sorted by family and sub-
variant. Most files in this directory can be generated with the python scripts in tools/.

• supervisor/ contains port-specific implementations of internal flash, serial and USB, as well as the port.c file,
which initializes the port at startup.

• tools/ includes useful Python scripts for debugging and other purposes.

At the root level, refer to mpconfigboard.h and mpconfigport.mk for port specific settings and a list of enabled
CircuitPython modules.

Connecting to the ESP32-C3

USB Connection:

On ESP32-C3 REV3 chips, a USB Serial/JTAG Controller is available. Note: This USB connection cannot be used
for a CIRCUITPY drive.

Depending on the board you have, the USB port may or may not be connected to native USB.

The following connections need to be made if native USB isn’t available on the USB port:

GPIO USB
19 D+ (green)
18 D- (white)
GND GND (black)
5V 5V (red)

Connect these pins using a USB adapter or breakout cable.

UART Connection:

A USB to UART convertor can be used for connecting to ESP32-C3 to get access to the serial console and REPL and
for flashing CircuitPython.

The following connections need to be made in this case:

GPIO UART
21 RX
20 TX
GND GND
5V 5V

BLE Connection:

This feature is not yet available and currently under development.

236 Chapter 1. CircuitPython

https://www.adafruit.com/product/4090
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/3309

CircuitPython Documentation, Release 7.3.3

Connecting to the ESP32-S2

USB Connection:

Depending on the board you have, the USB port may or may not be connected to native USB.

The following connections need to be made if native USB isn’t available on the USB port:

GPIO USB
20 D+ (green)
19 D- (white)
GND GND (black)
5V 5V (red)

Connect these pins using a USB adapter or breakout cable to access the CircuitPython drive.

UART Connection:

A USB to UART convertor can be used for connecting to ESP32-S2 to get access to the serial console and REPL and
for flashing CircuitPython.

The following connections need to be made in this case:

GPIO UART
43 RX
44 TX
GND GND
5V 5V

BLE Connection:

This feature isn’t available on ESP32-S2.

Connecting to the ESP32-S3

USB Connection:

Depending on the board you have, the USB port may or may not be connected to native USB.

The following connections need to be made if native USB isn’t available on the USB port:

GPIO USB
20 D+ (green)
19 D- (white)
GND GND (black)
5V 5V (red)

Connect these pins using a USB adapter or breakout cable to access the CircuitPython drive.

UART Connection:

A USB to UART convertor can be used for connecting to ESP32-S3 to get access to the serial console and REPL and
for flashing CircuitPython.

The following connections need to be made in this case:

1.8. Full Table of Contents 237

https://www.adafruit.com/product/4090
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/3309
https://www.adafruit.com/product/4090
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/3309

CircuitPython Documentation, Release 7.3.3

GPIO UART
43 RX
44 TX
GND GND
5V 5V

BLE Connection:

This feature is not yet available and currently under development.

Building and flashing

Before building or flashing the, you must install the ESP-IDF.

Note: This must be re-done every time the ESP-IDF is updated, but not every time you build.

Run cd ports/espressif from circuitpython/ to move to the espressif port root, and run:

./esp-idf/install.sh

After this initial installation, you must add the ESP-IDF tools to your path.

Note: This must be re-done every time you open a new shell environment for building or flashing.

Run cd ports/espressif from circuitpython/ to move to the espressif port root, and run:

./esp-idf/export.sh

When CircuitPython updates the ESP-IDF to a new release, you may need to run this installation process again. The
exact commands used may also vary based on your shell environment.

Building boards is typically done through make BOARD=board_id. The default port is tty.SLAB_USBtoUART, which
will only work on certain Mac setups. On most machines, both Mac and Linux, you will need to set the port yourself
by running ls /dev/tty.usb* and selecting the one that only appears when your development board is plugged in.
An example make command with the port setting is as follows:

make BOARD=board_id PORT=/dev/tty.usbserial-1421120 flash

board_id is the unique board identifier in CircuitPython. It is the same as the name of the board in the boards
directory.

Debugging

TODO: Add documentation for ESP32-C3/S3 JTAG feature.

The ESP32-S2 supports JTAG debugging over OpenOCD using a JLink or other probe hardware. The official tutorials
can be found on the Espressif website here, but they are mostly for the ESP32-S2 Kaluga, which has built-in debugging.

OpenOCD is automatically installed and added to your bash environment during the ESP-IDF installation and setup
process. You can double check that it is installed by using openocd --version, as per the tutorial. Attach the JTAG
probe pins according to the instructions for JTAG debugging on boards that do not contain an integrated debugger.

Once the debugger is connected physically, you must run OpenOCD with attached configuration files specifying the
interface (your debugger probe) and either a target or a board (targets are for SoCs only, and can be used when a
full board configuration file doesn’t exist). You can find the location of these files by checking the OPENOCD_SCRIPTS

238 Chapter 1. CircuitPython

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/jtag-debugging/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/jtag-debugging/configure-other-jtag.html

CircuitPython Documentation, Release 7.3.3

environmental variable by running echo $OPENOCD_SCRIPTS. Interfaces will be in the interface/ directory, and
targets and boards in the target/ and board/ directories, respectively.

Note: Unfortunately, there are no board files for the esp32-s2 other than the Kaluga, and the included target/
esp32s2.cfg target file will not work by default on the JLink for boards like the Saola 1, as the default speed is
incorrect. In addition, these files are covered under the GPL and cannot be included in CircuitPython. Thus, you must
make a copy of the esp32s2.cfg file yourself and add the following line manually, under transport select jtag
at the start of the file:

adapter_khz 1000

Once this is complete, your final OpenOCD command may look something like this:

openocd -f interface/jlink.cfg -f SOMEPATH/copied-esp32s2-saola-1.cfg

Where SOMEPATH is the location of your copied configuration file (this can be placed in the port/boards directory with
a prefix to ignore it with .gitignore, for instance). Interface, target and board config files sourced from Espressif only
need their paths from the $OPENOCD_SCRIPTS location, you don’t need to include their full path. Once OpenOCD
is running, connect to GDB with:

xtensa-esp32s2-elf-gdb build-espressif_saola_1_wrover/firmware.elf

And follow the Espressif GDB tutorial instructions for connecting, or add them to your gdbinit:

target remote :3333
set remote hardware-watchpoint-limit 2
mon reset halt
flushregs
thb app_main
c

LiteX (FPGA)

LiteX is a Python-based System on a Chip (SoC) designer for open source supported Field Programmable Gate Array
(FPGA) chips. This means that the CPU core(s) and peripherals are not defined by the physical chip. Instead, they
are loaded as separate “gateware”. Once this gateware is loaded, CircuitPython can be loaded on top of it to work as
expected.

Installation

You’ll need dfu-util to install CircuitPython on the Fomu.

Make sure the foboot bootloader is updated. Instructions are here: https://github.com/im-tomu/fomu-workshop/blob/
master/docs/bootloader.rst

Once you’ve updated the bootloader, you should know how to use dfu-util. It’s pretty easy!

To install CircuitPython do:

dfu-util -D adafruit-circuitpython-fomu-en_US-<version>.dfu

It will install and then restart. CIRCUITPY should appear as it usually does and work the same.

1.8. Full Table of Contents 239

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/jtag-debugging/using-debugger.html
https://github.com/enjoy-digital/litex
https://github.com/im-tomu/fomu-workshop/blob/master/docs/bootloader.rst
https://github.com/im-tomu/fomu-workshop/blob/master/docs/bootloader.rst

CircuitPython Documentation, Release 7.3.3

CircuitPython Port To The NXP i.MX RT10xx Series

This is a port of CircuitPython to the i.MX RT10xx series of chips.

CircuitPython Port To The Nordic Semiconductor nRF52 Series

This is a port of CircuitPython to the Nordic Semiconductor nRF52 series of chips.

NOTE: There are board-specific READMEs that may be more up to date than the generic board-neutral
documentation below.

Flash

Some boards have UF2 bootloaders and can simply be flashed in the normal way, by copying firmware.uf2 to the BOOT
drive.

For some boards, you can use the flash target:

make BOARD=pca10056 flash

Segger Targets

Install the necessary tools to flash and debug using Segger:

JLink Download

nrfjprog linux-32bit Download

nrfjprog linux-64bit Download

nrfjprog osx Download

nrfjprog win32 Download

note: On Linux it might be required to link SEGGER’s libjlinkarm.so inside nrfjprog’s folder.

DFU Targets

run follow command to install adafruit-nrfutil from PyPi

$ pip3 install --user adafruit-nrfutil

make flash and make sd will not work with DFU targets. Hence, dfu-gen and dfu-flash must be used instead.

• dfu-gen: Generates a Firmware zip to be used by the DFU flash application.

• dfu-flash: Triggers the DFU flash application to upload the firmware from the generated Firmware zip file.

When enabled you have different options to test it:

• NUS Console for Linux (recommended)

• WebBluetooth REPL (experimental)

240 Chapter 1. CircuitPython

https://www.segger.com/downloads/jlink
https://www.nordicsemi.com/eng/nordic/download_resource/52615/16/95882111/97746
https://www.nordicsemi.com/eng/nordic/download_resource/51386/21/77886419/94917
https://www.nordicsemi.com/eng/nordic/download_resource/53402/12/97293750/99977
https://www.nordicsemi.com/eng/nordic/download_resource/33444/40/22191727/53210
https://github.com/adafruit/Adafruit_nRF52_nrfutil
https://github.com/tralamazza/nus_console
https://glennrub.github.io/webbluetooth/micropython/repl/

CircuitPython Documentation, Release 7.3.3

RP2040

This port supports many development boards that utilize RP2040 chips. See https://circuitpython.org/downloads for
all supported boards.

Building

For build instructions see this guide: https://learn.adafruit.com/building-circuitpython/

Port Specific modules

Circuitpython on STM32

This port brings the ST Microelectronics STM32 series of MCUs to Circuitpython. STM32 chips have a wide range
of capability, from <$1 low power STM32F0s to dual-core STM32H7s running at 400+ MHz. Currently, only the F4,
F7, and H7 families are supported, powered by the ARM Cortex M4 and M7 processors.

Refer to the ST Microelectronics website for more information on features sorted by family and individual chip lines:
st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus.html

STM32 SoCs vary product-by-product in clock speed, peripheral capability, pin assignments, and their support within
this port. Refer to mpconfigport.mk for a full list of enabled modules sorted by family.

How this port is organized:

• boards/ contains the configuration files for each development board and breakout available on the port, as well
as system files and both shared and SoC-specific linker files. Board configuration includes a pin mapping of the
board, oscillator information, board-specific build flags, and setup for OLED or TFT screens where applicable.

• common-hal/ contains the port-specific module implementations, used by shared-module and shared-bindings.

• packages/ contains package-specific pin bindings (LQFP100, BGA216, etc)

• peripherals/ contains peripheral setup files and peripheral mapping information, sorted by family and sub-
variant. Most files in this directory can be generated with the python scripts in tools/.

• st-driver/ submodule for ST HAL and LL files generated via CubeMX. Shared with TinyUSB.

• supervisor/ contains port-specific implementations of internal flash, serial and USB, as well as the port.c file,
which initializes the port at startup.

• tools/ python scripts for generating peripheral and pin mapping files in peripherals/ and board/.

At the root level, refer to mpconfigboard.h and mpconfigport.mk for port specific settings and a list of enabled
modules.

1.8. Full Table of Contents 241

https://circuitpython.org/downloads
https://learn.adafruit.com/building-circuitpython/
https://www.st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus.html

CircuitPython Documentation, Release 7.3.3

Build instructions

Ensure your clone of Circuitpython is ready to build by following the guide on the Adafruit Website. This includes
installing the toolchain, synchronizing submodules, and running mpy-cross.

Once the one-time build tasks are complete, you can build at any time by navigating to the port directory:

$ cd ports/stm

To build for a specific circuitpython board, run:

$ make BOARD=feather_stm32f405_express

You may also build with certain flags available in the makefile, depending on your board and development goals. The
following flags would enable debug information and correct flash locations for a pre-flashed UF2 bootloader:

$ make BOARD=feather_stm32f405_express DEBUG=1 UF2_BOOTLOADER=1

USB connection

Connect your development board of choice to the host PC via the USB cable. Note that for most ST development boards
such as the Nucleo and Discovery series, you must use a secondary OTG USB connector to access circuitpython, as
the primary USB connector will be connected to a built-in ST-Link debugger rather than the chip itself.

In many cases, this ST-Link USB connector will still need to be connected to power for the chip to turn on - refer to
your specific product manual for details.

Flash the bootloader

Most ST development boards come with a built-in STLink programming and debugging probe accessible via USB.
This programmer may show up as an MBED drive on the host PC, enabling simple drag and drop programming with a
.bin file, or they may require a tool like OpenOCD or StLink-org/stlink to run flashing and debugging commands.

Many hobbyist and 3rd party development boards also expose SWD pins. These can be used with a cheap stlink
debugger or other common programmers.

For non-ST products or users without a debugger, all STM32 boards in the high performance families (F4, F7 and H7)
include a built-in DFU bootloader stored in ROM. This bootloader is accessed by ensuring the BOOT0 pin is held to a
logic 1 and the BOOT1 pin is held to a logic 0 when the chip is reset (ST Appnote AN2606). Most chips hold BOOT
low by default, so this can usually be achieved by running a jumper wire from 3.3V power to the BOOT0 pin, if it is
exposed, or by flipping the appropriate switch or button as the chip is reset. Once the chip is started in DFU mode,
BOOT0 no longer needs to be held high and can be released. An example is available in the Feather STM32F405 guide.

Windows users will need to install stm32cubeprog, while Mac and Linux users will need to install dfu-util with
brew install dfu-util or sudo apt-get install dfu-util. More details are available in the Feather F405
guide.

242 Chapter 1. CircuitPython

https://learn.adafruit.com/building-circuitpython/introduction
http://openocd.org/
https://github.com/stlink-org/stlink
https://www.adafruit.com/product/2548
https://www.st.com/resource/en/application_note/cd00167594-stm32-microcontroller-system-memory-boot-mode-stmicroelectronics.pdf
https://learn.adafruit.com/adafruit-stm32f405-feather-express/dfu-bootloader-details
https://www.st.com/en/development-tools/stm32cubeprog.html
https://learn.adafruit.com/adafruit-stm32f405-feather-express/dfu-bootloader-details
https://learn.adafruit.com/adafruit-stm32f405-feather-express/dfu-bootloader-details

CircuitPython Documentation, Release 7.3.3

Flashing the circuitpython image with DFU-Util

Ensure the board is in dfu mode by following the steps in the previous section. Then run:

$ make BOARD=feather_stm32F405_express flash

Alternatively, you can navigate to the build directory and run the raw dfu-util command:

dfu-util -a 0 --dfuse-address 0x08000000 -D firmware.bin

Accessing the board

Connecting the board to the PC via the USB cable will allow code to be uploaded to the CIRCUITPY volume.

Circuitpython exposes a CDC virtual serial connection for REPL access and debugging. Connecting to it from OSX
will look something like this:

screen /dev/tty.usbmodem14111201 115200

You may also use a program like mu to assist with REPL access.

1.8.3 Troubleshooting

From time to time, an error occurs when working with CircuitPython. Here are a variety of errors that can happen,
what they mean and how to fix them.

File system issues

If your host computer starts complaining that your CIRCUITPY drive is corrupted or files cannot be overwritten or
deleted, then you will have to erase it completely. When CircuitPython restarts it will create a fresh empty CIRCUITPY
filesystem.

Corruption often happens on Windows when the CIRCUITPY disk is not safely ejected before being reset by the button
or being disconnected from USB. This can also happen on Linux and Mac OSX but it’s less likely.

Caution: To erase and re-create CIRCUITPY (for example, to correct a corrupted filesystem), follow one of the
procedures below. It’s important to note that any files stored on the CIRCUITPY drive will be erased. Back up
your code if possible before continuing!

REPL Erase Method

This is the recommended method of erasing your board. If you are having trouble accessing the CIRCUITPY drive or
the REPL, consider first putting your board into safe mode.

To erase any board if you have access to the REPL:

1. Connect to the CircuitPython REPL using a terminal program.

2. Type import storage into the REPL.

3. Then, type storage.erase_filesystem() into the REPL.

4. The CIRCUITPY drive will be erased and the board will restart with an empty CIRCUITPY drive.

1.8. Full Table of Contents 243

https://codewith.mu/
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#safe-mode-3105351-22

CircuitPython Documentation, Release 7.3.3

Erase File Method

If you do not have access to the REPL, you may still have options to erase your board.

The Erase CIRCUITPY Without Access to the REPL section of the Troubleshooting page in the Welcome to Circuit-
Python guide covers the non-REPL erase process for various boards. Visit the guide, find the process that applies to
your board, and follow the instructions to erase your board.

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file (rather than a py text file) that was
generated by a different version of CircuitPython than the one it’s being loaded into. Most versions are compatible but,
rarely they aren’t. In particular, the mpy binary format changed between CircuitPython versions 1.x and 2.x, 2.x and
3.x, and will change again between 6.x and 7.x.

So, for instance, if you just upgraded to CircuitPython 7.x from 6.x you’ll need to download a newer version of the
library that triggered the error on import. They are all available in the Adafruit bundle and the Community bundle.
Make sure to download a version with 7.0.0 or higher in the filename.

1.8.4 Additional CircuitPython Libraries and Drivers on GitHub

These are libraries and drivers available in separate GitHub repos. They are designed for use with CircuitPython and
may or may not work with MicroPython.

Adafruit CircuitPython Library Bundle

We provide a bundle of all our libraries to ease installation of drivers and their dependencies. The bundle is primarily
geared to the Adafruit Express line of boards which feature a relatively large external flash. With Express boards, it’s
easy to copy them all onto the filesystem. However, if you don’t have enough space simply copy things over as they are
needed.

• The Adafruit bundles are available on GitHub: <https://github.com/adafruit/Adafruit_CircuitPython_Bundle/
releases>.

• Documentation for the bundle, which includes links to documentation for all libraries, is available here: <https:
//circuitpython.readthedocs.io/projects/bundle/en/latest/>.

CircuitPython Community Library Bundle

This bundle contains non-Adafruit sponsored libraries, that are written and submitted by members of the community.

• The Community bundles are available on GitHub: <https://github.com/adafruit/CircuitPython_Community_
Bundle/releases>.

• Documentation is not available on ReadTheDocs at this time. See each library for any included documentation.

244 Chapter 1. CircuitPython

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#erase-circuitpy-without-access-to-the-repl-3105309-32
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
https://github.com/adafruit/CircuitPython_Community_Bundle/releases/latest
https://micropython.org
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/CircuitPython_Community_Bundle/releases
https://github.com/adafruit/CircuitPython_Community_Bundle/releases

CircuitPython Documentation, Release 7.3.3

1.8.5 Design Guide

This guide covers a variety of development practices for CircuitPython core and library APIs. These APIs are both built-
into CircuitPython and those that are distributed on GitHub and in the Adafruit and Community bundles. Consistency
with these practices ensures that beginners can learn a pattern once and apply it throughout the CircuitPython ecosystem.

Start libraries with the cookiecutter

Cookiecutter is a tool that lets you bootstrap a new repo based on another repo. We’ve made one here for CircuitPython
libraries that include configs for Travis CI and ReadTheDocs along with a setup.py, license, code of conduct, readme
among other files.

Cookiecutter will provide a series of prompts relating to the library and then create a new directory with all of the files.
See the CircuitPython cookiecutter README for more details.

Module Naming

Adafruit funded libraries should be under the adafruit organization and have the format
Adafruit_CircuitPython_<name> and have a corresponding adafruit_<name> directory (aka package) or
adafruit_<name>.py file (aka module).

If the name would normally have a space, such as “Thermal Printer”, use an underscore instead (“Thermal_Printer”).
This underscore will be used everywhere even when the separation between “adafruit” and “circuitpython” is done with
a -. Use the underscore in the cookiecutter prompts.

Community created libraries should have the repo format CircuitPython_<name> and not have the adafruit_
module or package prefix.

Both should have the CircuitPython repository topic on GitHub.

Terminology

As our Code of Conduct states, we strive to use “welcoming and inclusive language.” Whether it is in documentation or
in code, the words we use matter. This means we disfavor language that due to historical and social context can make
community members and potential community members feel unwelcome.

There are specific terms to avoid except where technical limitations require it. While specific cases may call for other
terms, consider using these suggested terms first:

Preferred Deprecated
Main (device) Master
Peripheral Slave
Sensor
Secondary (device)
Denylist Blacklist
Allowlist Whitelist

Note that “technical limitations” refers e.g., to the situation where an upstream library or URL has to contain those
substrings in order to work. However, when it comes to documentation and the names of parameters and properties in
CircuitPython, we will use alternate terms even if this breaks tradition with past practice.

1.8. Full Table of Contents 245

https://github.com/adafruit/circuitpython/tree/main/shared-bindings
https://github.com/adafruit/circuitpython/tree/main/shared-bindings
https://github.com/search?utf8=%E2%9C%93&q=topic%3Acircuitpython&type=
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle/
https://github.com/adafruit/cookiecutter-adafruit-circuitpython
https://github.com/adafruit/cookiecutter-adafruit-circuitpython#introduction
https://github.com/adafruit

CircuitPython Documentation, Release 7.3.3

Lifetime and ContextManagers

A driver should be initialized and ready to use after construction. If the device requires deinitialization, then provide it
through deinit() and also provide __enter__ and __exit__ to create a context manager usable with with.

For example, a user can then use deinit()`:

import digitalio
import board
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

for i in range(10):
led.value = True
time.sleep(0.5)

led.value = False
time.sleep(0.5)

led.deinit()

This will deinit the underlying hardware at the end of the program as long as no exceptions occur.

Alternatively, using a with statement ensures that the hardware is deinitialized:

import digitalio
import board
import time

with digitalio.DigitalInOut(board.LED) as led:
led.direction = digitalio.Direction.OUTPUT

for i in range(10):
led.value = True
time.sleep(0.5)

led.value = False
time.sleep(0.5)

Python’s with statement ensures that the deinit code is run regardless of whether the code within the with statement
executes without exceptions.

For small programs like the examples this isn’t a major concern because all user usable hardware is reset after programs
are run or the REPL is run. However, for more complex programs that may use hardware intermittently and may also
handle exceptions on their own, deinitializing the hardware using a with statement will ensure hardware isn’t enabled
longer than needed.

246 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Verify your device

Whenever possible, make sure device you are talking to is the device you expect. If not, raise a RuntimeError. Beware
that I2C addresses can be identical on different devices so read registers you know to make sure they match your
expectation. Validating this upfront will help catch mistakes.

Getters/Setters

When designing a driver for a device, use properties for device state and use methods for sequences of abstract actions
that the device performs. State is a property of the device as a whole that exists regardless of what the code is doing.
This includes things like temperature, time, sound, light and the state of a switch. For a more complete list see the
sensor properties bullet below.

Another way to separate state from actions is that state is usually something the user can sense themselves by sight or
feel for example. Actions are something the user can watch. The device does this and then this.

Making this separation clear to the user will help beginners understand when to use what.

Here is more info on properties from Python.

Exceptions and asserts

Raise an appropriate Exception, along with a useful message, whenever a critical test or other condition fails.

Example:

if not 0 <= pin <= 7:
raise ValueError("Pin number must be 0-7.")

If memory is constrained and a more compact method is needed, use The assert statement instead.

Example:

assert 0 <= pin <= 7, "Pin number must be 0-7."

Design for compatibility with CPython

CircuitPython is aimed to be one’s first experience with code. It will be the first step into the world of hardware and
software. To ease one’s exploration out from this first step, make sure that functionality shared with CPython shares
the same API. It doesn’t need to be the full API it can be a subset. However, do not add non-CPython APIs to the same
modules. Instead, use separate non-CPython modules to add extra functionality. By distinguishing API boundaries at
modules you increase the likelihood that incorrect expectations are found on import and not randomly during runtime.

When adding a new module for additional functionality related to a CPython module do NOT simply prefix it with u.
This is not a large enough differentiation from CPython. This is the MicroPython convention and they use u* modules
interchangeably with the CPython name. This is confusing. Instead, think up a new name that is related to the extra
functionality you are adding.

For example, storage mounting and unmounting related functions were moved from uos into a new storage module.
Terminal related functions were moved into multiterminal. These names better match their functionality and do not
conflict with CPython names. Make sure to check that you don’t conflict with CPython libraries too. That way we can
port the API to CPython in the future.

1.8. Full Table of Contents 247

https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/exceptions.html#bltin-exceptions
https://docs.python.org/3/reference/simple_stmts.html#assert

CircuitPython Documentation, Release 7.3.3

Example

When adding extra functionality to CircuitPython to mimic what a normal operating system would do, either copy an
existing CPython API (for example file writing) or create a separate module to achieve what you want. For example,
mounting and unmount drives is not a part of CPython so it should be done in a module, such as a new storage
module, that is only available in CircuitPython. That way when someone moves the code to CPython they know what
parts need to be adapted.

Document inline

Whenever possible, document your code right next to the code that implements it. This makes it more likely to stay
up to date with the implementation itself. Use Sphinx’s automodule to format these all nicely in ReadTheDocs. The
cookiecutter helps set these up.

Use Sphinx flavor rST for markup.

Lots of documentation is a good thing but it can take a lot of space. To minimize the space used on disk and on load,
distribute the library as both .py and .mpy, MicroPython and CircuitPython’s bytecode format that omits comments.

Module description

After the license comment:

"""
`<module name>`
===

<Longer description>

* Author(s):

Implementation Notes

Hardware:

* `Adafruit Device Description
<hyperlink>`_ (Product ID: <Product Number>)

Software and Dependencies:

* Adafruit CircuitPython firmware for the supported boards:
https://circuitpython.org/downloads

* Adafruit's Bus Device library:
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

* Adafruit's Register library:
https://github.com/adafruit/Adafruit_CircuitPython_Register

"""

248 Chapter 1. CircuitPython

http://www.sphinx-doc.org/en/stable/rest.html

CircuitPython Documentation, Release 7.3.3

Class description

At the class level document what class does and how to initialize it:

class DS3231:
"""DS3231 real-time clock.

:param ~busio.I2C i2c_bus: The I2C bus the DS3231 is connected to.
:param int address: The I2C address of the device. Defaults to :const:`0x40`

"""

def __init__(self, i2c_bus, address=0x40):
self._i2c = i2c_bus

Renders as:

class DS3231(i2c_bus, address=64)
DS3231 real-time clock.

Parameters

• i2c_bus (I2C) – The I2C bus the DS3231 is connected to.

• address (int) – The I2C address of the device. Defaults to 0x40

Documenting Parameters

Although there are different ways to document class and functions definitions in Python, the following is the prevalent
method of documenting parameters for CircuitPython libraries. When documenting class parameters you should use
the following structure:

:param param_type param_name: Parameter_description

param_type

The type of the parameter. This could be among other int, float, str bool, etc. To document an object in the
CircuitPython domain, you need to include a ~ before the definition as shown in the following example:

:param ~busio.I2C i2c_bus: The I2C bus the DS3231 is connected to.

To include references to CircuitPython modules, cookiecutter creates an entry in the intersphinx_mapping section in
the conf.py file located within the docs directory. To add different types outside CircuitPython you need to include
them in the intersphinx_mapping:

intersphinx_mapping = {
"python": ("https://docs.python.org/3.4", None),
"BusDevice":("https://circuitpython.readthedocs.io/projects/busdevice/en/latest/",␣

→˓None,),
"CircuitPython": ("https://circuitpython.readthedocs.io/en/latest/", None),

}

The intersphinx_mapping above includes references to Python, BusDevice and CircuitPython Documentation

When the parameter have two different types, you should reference them as follows:

1.8. Full Table of Contents 249

CircuitPython Documentation, Release 7.3.3

class Character_LCD:
"""Base class for character LCD

:param ~digitalio.DigitalInOut rs: The reset data line
:param ~pwmio.PWMOut,~digitalio.DigitalInOut blue: Blue RGB Anode

"""

def __init__(self, rs, blue):
self._rc = rs
self.blue = blue

Renders as:

class Character_LCD(rs, blue)
Base class for character LCD

Parameters

• rs (DigitalInOut) – The reset data line

• blue (PWMOut,DigitalInOut) – Blue RGB Anode

param_name

Parameter name used in the class or method definition

Parameter_description

Parameter description. When the parameter defaults to a particular value, it is good practice to include the default:

:param int pitch: Pitch value for the servo. Defaults to :const:`4500`

Attributes

Attributes are state on objects. (See Getters/Setters above for more discussion about when to use them.) They can be
defined internally in a number of different ways. Each approach is enumerated below with an explanation of where the
comment goes.

Regardless of how the attribute is implemented, it should have a short description of what state it represents including
the type, possible values and/or units. It should be marked as (read-only) or (write-only) at the end of the first
line for attributes that are not both readable and writable.

250 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Instance attributes

Comment comes from after the assignment:

def __init__(self, drive_mode):
self.drive_mode = drive_mode
"""
The pin drive mode. One of:

- `digitalio.DriveMode.PUSH_PULL`
- `digitalio.DriveMode.OPEN_DRAIN`
"""

Renders as:

drive_mode

The pin drive mode. One of:

• digitalio.DriveMode.PUSH_PULL

• digitalio.DriveMode.OPEN_DRAIN

Property description

Comment comes from the getter:

@property
def datetime(self):

"""The current date and time as a `time.struct_time`."""
return self.datetime_register

@datetime.setter
def datetime(self, value):

pass

Renders as:

datetime

The current date and time as a time.struct_time.

Read-only example:

@property
def temperature(self):

"""
The current temperature in degrees Celsius. (read-only)

The device may require calibration to get accurate readings.
"""
return self._read(TEMPERATURE)

Renders as:

temperature

The current temperature in degrees Celsius. (read-only)

1.8. Full Table of Contents 251

CircuitPython Documentation, Release 7.3.3

The device may require calibration to get accurate readings.

Data descriptor description

Comment is after the definition:

lost_power = i2c_bit.RWBit(0x0f, 7)
"""True if the device has lost power since the time was set."""

Renders as:

lost_power

True if the device has lost power since the time was set.

Method description

First line after the method definition:

def turn_right(self, degrees):
"""Turns the bot ``degrees`` right.

:param float degrees: Degrees to turn right
"""

Renders as:

turn_right(degrees)
Turns the bot degrees right.

Parameters
degrees (float) – Degrees to turn right

Documentation References to other Libraries

When you need to make references to documentation in other libraries you should refer the class using single back-
ticks :class:`~adafruit_motor.servo.Servo`. You must also add the reference in the conf.py file in the
intersphinx_mapping section by adding a new entry:

"adafruit_motor": ("https://circuitpython.readthedocs.io/projects/motor/en/latest/",␣
→˓None,),

Use BusDevice

BusDevice is an awesome foundational library that manages talking on a shared I2C or SPI device for you. The devices
manage locking which ensures that a transfer is done as a single unit despite CircuitPython internals and, in the future,
other Python threads. For I2C, the device also manages the device address. The SPI device, manages baudrate settings,
chip select line and extra post-transaction clock cycles.

252 Chapter 1. CircuitPython

https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

CircuitPython Documentation, Release 7.3.3

I2C Example

from adafruit_bus_device import i2c_device

DEVICE_DEFAULT_I2C_ADDR = 0x42

class Widget:
"""A generic widget."""

def __init__(self, i2c, address=DEVICE_DEFAULT_I2C_ADDR):
self.i2c_device = i2c_device.I2CDevice(i2c, address)
self.buf = bytearray(1)

@property
def register(self):

"""Widget's one register."""
with self.i2c_device as i2c:

i2c.writeto(b'0x00')
i2c.readfrom_into(self.buf)

return self.buf[0]

SPI Example

from adafruit_bus_device import spi_device

class SPIWidget:
"""A generic widget with a weird baudrate."""

def __init__(self, spi, chip_select):
chip_select is a pin reference such as board.D10.
self.spi_device = spi_device.SPIDevice(spi, chip_select, baudrate=12345)
self.buf = bytearray(1)

@property
def register(self):

"""Widget's one register."""
with self.spi_device as spi:

spi.write(b'0x00')
spi.readinto(self.buf)

return self.buf[0]

1.8. Full Table of Contents 253

CircuitPython Documentation, Release 7.3.3

Class documentation example template

When documenting classes, you should use the following template to illustrate basic usage. It is similar with the
simpletest example, however this will display the information in the Read The Docs documentation. The advantage of
using this template is it makes the documentation consistent across the libraries.

This is an example for a AHT20 temperature sensor. Include the following after the class parameter:

"""

Quickstart: Importing and using the AHT10/AHT20 temperature sensor

Here is an example of using the :class:`AHTx0` class.
First you will need to import the libraries to use the sensor

.. code-block:: python

import board
import adafruit_ahtx0

Once this is done you can define your `board.I2C` object and define your sensor object

.. code-block:: python

i2c = board.I2C() # uses board.SCL and board.SDA
aht = adafruit_ahtx0.AHTx0(i2c)

Now you have access to the temperature and humidity using
the :attr:`temperature` and :attr:`relative_humidity` attributes

.. code-block:: python

temperature = aht.temperature
relative_humidity = aht.relative_humidity

"""

Use composition

When writing a driver, take in objects that provide the functionality you need rather than taking their arguments and
constructing them yourself or subclassing a parent class with functionality. This technique is known as composition
and leads to code that is more flexible and testable than traditional inheritance.

See also:

Wikipedia has more information on “dependency inversion”.

For example, if you are writing a driver for an I2C device, then take in an I2C object instead of the pins themselves.
This allows the calling code to provide any object with the appropriate methods such as an I2C expansion board.

Another example is to expect a DigitalInOut for a pin to toggle instead of a Pin from board . Taking in the Pin
object alone would limit the driver to pins on the actual microcontroller instead of pins provided by another driver such
as an IO expander.

254 Chapter 1. CircuitPython

https://en.wikipedia.org/wiki/Dependency_inversion_principle

CircuitPython Documentation, Release 7.3.3

Lots of small modules

CircuitPython boards tend to have a small amount of internal flash and a small amount of ram but large amounts of
external flash for the file system. So, create many small libraries that can be loaded as needed instead of one large file
that does everything.

Speed second

Speed isn’t as important as API clarity and code size. So, prefer simple APIs like properties for state even if it sacrifices
a bit of speed.

Avoid allocations in drivers

Although Python doesn’t require managing memory, it’s still a good practice for library writers to think about memory
allocations. Avoid them in drivers if you can because you never know how much something will be called. Fewer
allocations means less time spent cleaning up. So, where you can, prefer bytearray buffers that are created in __init__
and used throughout the object with methods that read or write into the buffer instead of creating new objects. Unified
hardware API classes such as busio.SPI are design to read and write to subsections of buffers.

It’s ok to allocate an object to return to the user. Just beware of causing more than one allocation per call due to internal
logic.

However, this is a memory tradeoff so do not do it for large or rarely used buffers.

Examples

struct.pack

Use struct.pack_into instead of struct.pack .

Use of MicroPython const()

The MicroPython const() feature, as discussed in this forum post, and in this issue thread, provides some optimiza-
tions that can be useful on smaller, memory constrained devices. However, when using const(), keep in mind these
general guide lines:

• Always use via an import, ex: from micropython import const

• Limit use to global (module level) variables only.

• If user will not need access to variable, prefix name with a leading underscore, ex: _SOME_CONST.

Libraries Examples

When adding examples, cookiecutter will add a <name>_simpletest.py file in the examples directory for you.
Be sure to include code with the library minimal functionalities to work on a device. You could other examples if
needed featuring different functionalities of the library. If you add additional examples, be sure to include them in
the examples.rst. Naming of the examples files should use the name of the library followed by a description, using
underscore to separate them. When using print statements you should use the " ".format() format, as there are
particular boards that are not capable to use f-strings.

1.8. Full Table of Contents 255

https://forum.micropython.org/viewtopic.php?t=450
https://github.com/micropython/micropython/issues/573

CircuitPython Documentation, Release 7.3.3

text_to_display = "World!"

print("Hello {}".format(text_to_display))

Sensor properties and units

The Adafruit Unified Sensor Driver Arduino library has a great list of measurements and their units. Use the same ones
including the property name itself so that drivers can be used interchangeably when they have the same properties.

Property name Python type Units
acceleration (float, float,

float)
x, y, z meter per second per second

magnetic (float, float,
float)

x, y, z micro-Tesla (uT)

orientation (float, float,
float)

x, y, z degrees

gyro (float, float,
float)

x, y, z radians per second

temperature float degrees Celsius
CO2 float measured CO2 in ppm
eCO2 float equivalent/estimated CO2 in ppm (estimated from some other measure-

ment)
TVOC float Total Volatile Organic Compounds in ppb
distance float centimeters (cm)
proximity int non-unit-specific proximity values (monotonic but not actual distance)
light float non-unit-specific light levels (should be monotonic but is not lux)
lux float SI lux
pressure float hectopascal (hPa)
relative_humidity float percent
current float milliamps (mA)
voltage float volts (V)
color int RGB, eight bits per channel (0xff0000 is red)
alarm (time.struct, str) Sample alarm time and string to characterize frequency such as “hourly”
datetime time.struct date and time
duty_cycle int 16-bit PWM duty cycle (regardless of output resolution)
frequency int Hertz (Hz)
value bool Digital logic
value int 16-bit Analog value, unit-less
weight float grams (g)
sound_level float non-unit-specific sound level (monotonic but not actual decibels)

256 Chapter 1. CircuitPython

https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver/introduction
https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver?view=all#standardised-si-units-for-sensor-data

CircuitPython Documentation, Release 7.3.3

Adding native modules

The Python API for a new module should be defined and documented in shared-bindings and define an underlying
C API. If the implementation is port-agnostic or relies on underlying APIs of another module, the code should live in
shared-module. If it is port specific then it should live in common-hal within the port’s folder. In either case, the file
and folder structure should mimic the structure in shared-bindings.

To test your native modules or core enhancements, follow these Adafruit Learning Guides for building local firmware
to flash onto your device(s):

Build CircuitPython

MicroPython compatibility

Keeping compatibility with MicroPython isn’t a high priority. It should be done when it’s not in conflict with any of
the above goals.

We love CircuitPython and would love to see it come to more microcontroller platforms. Since 3.0 we’ve reworked
CircuitPython to make it easier than ever to add support. While there are some major differences between ports, this
page covers the similarities that make CircuitPython what it is and how that core fits into a variety of microcontrollers.

1.8.6 Architecture

There are three core pieces to CircuitPython:

The first is the Python VM that the awesome MicroPython devs have created. These VMs are written to be portable so
there is not much needed when moving to a different microcontroller, especially if it is ARM based.

The second is the infrastructure around those VMs which provides super basic operating system functionality such
as initializing hardware, running USB, prepping file systems and automatically running user code on boot. In Cir-
cuitPython we’ve dubbed this component the supervisor because it monitors and facilitates the VMs which run user
Python code. Porting involves the supervisor because many of the tasks it does while interfacing with the hardware.
Once complete, the REPL works and debugging can migrate to a Python based approach rather than C.

The third core piece is the plethora of low level APIs that CircuitPython provides as the foundation for higher level
libraries including device drivers. These APIs are called from within the running VMs through the Python interfaces
defined in shared-bindings. These bindings rely on the underlying common_hal C API to implement the function-
ality needed for the Python API. By splitting the two, we work to ensure standard functionality across which means
that libraries and examples apply across ports with minimal changes.

1.8.7 Porting

Step 1: Getting building

The first step to porting to a new microcontroller is getting a build running. The primary goal of it should be to get
main.c compiling with the assistance of the supervisor/supervisor.mk file. Port specific code should be isolated
to the port’s directory (in the top level until the ports directory is present). This includes the Makefile and any C
library resources. Make sure these resources are compatible with the MIT License of the rest of the code!

Circuitpython has a number of modules enabled by default in py/circuitpy_mpconfig.mk. Most of these modules
will need to be disabled in mpconfigboard.mk during the early stages of a port in order for it to compile. As the port
progresses in module support, this list can be pruned down as a natural “TODO” list. An example minimal build list is
shown below:

1.8. Full Table of Contents 257

https://learn.adafruit.com/building-circuitpython

CircuitPython Documentation, Release 7.3.3

These modules are implemented in ports/<port>/common-hal:

Typically the first module to create
CIRCUITPY_MICROCONTROLLER = 0
Typically the second module to create
CIRCUITPY_DIGITALIO = 0
Other modules:
CIRCUITPY_ANALOGIO = 0
CIRCUITPY_BUSIO = 0
CIRCUITPY_COUNTIO = 0
CIRCUITPY_NEOPIXEL_WRITE = 0
CIRCUITPY_PULSEIO = 0
CIRCUITPY_OS = 0
CIRCUITPY_NVM = 0
CIRCUITPY_AUDIOBUSIO = 0
CIRCUITPY_AUDIOIO = 0
CIRCUITPY_ROTARYIO = 0
CIRCUITPY_RTC = 0
CIRCUITPY_SDCARDIO = 0
CIRCUITPY_FRAMEBUFFERIO = 0
CIRCUITPY_FREQUENCYIO = 0
CIRCUITPY_I2CPERIPHERAL = 0
Requires SPI, PulseIO (stub ok):
CIRCUITPY_DISPLAYIO = 0

These modules are implemented in shared-module/ - they can be included in
any port once their prerequisites in common-hal are complete.
Requires DigitalIO:
CIRCUITPY_BITBANGIO = 0
Requires DigitalIO
CIRCUITPY_GAMEPADSHIFT = 0
Requires neopixel_write or SPI (dotstar)
CIRCUITPY_PIXELBUF = 0
Requires OS
CIRCUITPY_RANDOM = 0
Requires OS, filesystem
CIRCUITPY_STORAGE = 0
Requires Microcontroller
CIRCUITPY_TOUCHIO = 0
Requires USB
CIRCUITPY_USB_HID = 0
CIRCUITPY_USB_MIDI = 0
Does nothing without I2C
CIRCUITPY_REQUIRE_I2C_PULLUPS = 0
No requirements, but takes extra flash
CIRCUITPY_ULAB = 0

258 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Step 2: Init

Once your build is setup, the next step should be to get your clocks going as you expect from the supervisor. The
supervisor calls port_init to allow for initialization at the beginning of main. This function also has the ability to
request a safe mode state which prevents the supervisor from running user code while still allowing access to the REPL
and other resources.

The core port initialization and reset methods are defined in supervisor/port.c and should be the first to be imple-
mented. It’s required that they be implemented in the supervisor directory within the port directory. That way, they
are always in the expected place.

The supervisor also uses three linker variables, _ezero, _estack and _ebss to determine memory layout for stack
overflow checking.

Step 3: REPL

Getting the REPL going is a huge step. It involves a bunch of initialization to be done correctly and is a good sign
you are well on your porting way. To get the REPL going you must implement the functions and definitions from
supervisor/serial.h with a corresponding supervisor/serial.c in the port directory. This involves sending
and receiving characters over some sort of serial connection. It could be UART or USB for example.

1.8.8 Adding *io support to other ports

digitalio provides a well-defined, cross-port hardware abstraction layer built to support different devices and their
drivers. It’s backed by the Common HAL, a C api suitable for supporting different hardware in a similar manner. By
sharing this C api, developers can support new hardware easily and cross-port functionality to the new hardware.

These instructions also apply to analogio, busio, pulseio and touchio. Most drivers depend on analogio,
digitalio and busio so start with those.

File layout

Common HAL related files are found in these locations:

• shared-bindings Shared home for the Python <-> C bindings which includes inline RST documentation for
the created interfaces. The common hal functions are defined in the .h files of the corresponding C files.

• shared-module Shared home for C code built on the Common HAL and used by all ports. This code only uses
common_hal methods defined in shared-bindings.

• <port>/common-hal Port-specific implementation of the Common HAL.

Each folder has the substructure of / and they should match 1:1. __init__.c is used for module globals that are not
classes (similar to __init__.py).

1.8. Full Table of Contents 259

CircuitPython Documentation, Release 7.3.3

Adding support

Modifying the build

The first step is to hook the shared-bindings into your build for the modules you wish to support. Here’s an example
of this step for the atmel-samd/Makefile:

SRC_BINDINGS = \
board/__init__.c \
microcontroller/__init__.c \
microcontroller/Pin.c \
analogio/__init__.c \
analogio/AnalogIn.c \
analogio/AnalogOut.c \
digitalio/__init__.c \
digitalio/DigitalInOut.c \
pulseio/__init__.c \
pulseio/PulseIn.c \
pulseio/PulseOut.c \
pulseio/PWMOut.c \
busio/__init__.c \
busio/I2C.c \
busio/SPI.c \
busio/UART.c \
neopixel_write/__init__.c \
time/__init__.c \
usb_hid/__init__.c \
usb_hid/Device.c

SRC_BINDINGS_EXPANDED = $(addprefix shared-bindings/, $(SRC_BINDINGS)) \
$(addprefix common-hal/, $(SRC_BINDINGS))

Add the resulting objects to the full list
OBJ += $(addprefix $(BUILD)/, $(SRC_BINDINGS_EXPANDED:.c=.o))
Add the sources for QSTR generation
SRC_QSTR += $(SRC_C) $(SRC_BINDINGS_EXPANDED) $(STM_SRC_C)

The Makefile defines the modules to build and adds the sources to include the shared-bindings version and the
common-hal version within the port specific directory. You may comment out certain subfolders to reduce the number
of modules to add but don’t comment out individual classes. It won’t compile then.

Hooking the modules in

Built in modules are typically defined in mpconfigport.h. To add support you should have something like:

extern const struct _mp_obj_module_t microcontroller_module;
extern const struct _mp_obj_module_t analogio_module;
extern const struct _mp_obj_module_t digitalio_module;
extern const struct _mp_obj_module_t pulseio_module;
extern const struct _mp_obj_module_t busio_module;
extern const struct _mp_obj_module_t board_module;
extern const struct _mp_obj_module_t time_module;

(continues on next page)

260 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

extern const struct _mp_obj_module_t neopixel_write_module;

#define MICROPY_PORT_BUILTIN_MODULES \
{ MP_OBJ_NEW_QSTR(MP_QSTR_microcontroller), (mp_obj_t)µcontroller_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_analogio), (mp_obj_t)&analogio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_digitalio), (mp_obj_t)&digitalio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulseio), (mp_obj_t)&pulseio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_busio), (mp_obj_t)&busio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_board), (mp_obj_t)&board_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&time_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_neopixel_write),(mp_obj_t)&neopixel_write_module } \

Implementing the Common HAL

At this point in the port, nothing will compile yet, because there’s still work to be done to fix missing sources, compile
issues, and link issues. I suggest start with a common-hal directory from another port that implements it such as
atmel-samd or esp8266, deleting the function contents and stubbing out any return statements. Once that is done,
you should be able to compile cleanly and import the modules, but nothing will work (though you are getting closer).

The last step is actually implementing each function in a port specific way. I can’t help you with this. :-) If you have
any questions how a Common HAL function should work then see the corresponding .h file in shared-bindings.

Testing

Woohoo! You are almost done. After you implement everything, lots of drivers and sample code should just work.
There are a number of drivers and examples written for Adafruit’s Feather ecosystem. Here are places to start:

• Adafruit repos with CircuitPython topic

• Adafruit driver bundle

1.8.9 MicroPython libraries

Python standard libraries and micro-libraries

The libraries below are inherited from MicroPython. They are similar to the standard Python libraries with the same
name. They implement a subset of or a variant of the corresponding standard Python library.

CircuitPython’s long-term goal is that code written in CircuitPython using Python standard libraries will be runnable
on CPython without changes.

These libraries are not enabled on CircuitPython builds with limited flash memory, usually on non-Express builds:
binascii, errno, json, re.

These libraries are not currently enabled in any CircuitPython build, but may be in the future: ctypes, hashlib, zlib.

1.8. Full Table of Contents 261

https://github.com/search?q=topic%3Acircuitpython+org%3Aadafruit+fork%3Atrue
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

CircuitPython Documentation, Release 7.3.3

builtins – builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via builtins module.

For more information about built-ins, see the following CPython documentation:

• Builtin CPython Functions

• Builtin CPython Exceptions

• Builtin CPython Constants

Note: Not all of these functions, types, exceptions, and constants are turned on in all CircuitPython ports, for space
reasons.

Functions and types

abs()

all()

any()

bin()

class bool

class bytearray

class bytes

See CPython documentation: bytes.

callable()

chr()

classmethod()

compile()

class complex

delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by
obj.

class dict

dir()

divmod()

enumerate()

eval()

exec()

262 Chapter 1. CircuitPython

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/constants.html

CircuitPython Documentation, Release 7.3.3

filter()

class float

class frozenset

frozenset() is not enabled on non-Express CircuitPython boards.

getattr()

globals()

hasattr()

hash()

hex()

id()

input()

class int

classmethod from_bytes(bytes, byteorder)
In CircuitPython, byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)
In CircuitPython, byteorder parameter must be positional (this is compatible with CPython).

isinstance()

issubclass()

iter()

len()

class list

locals()

map()

max()

class memoryview

min()

next()

class object

oct()

open()

ord()

pow()

1.8. Full Table of Contents 263

CircuitPython Documentation, Release 7.3.3

print()

property()

range()

repr()

reversed()

reversed() is not enabled on non-Express CircuitPython boards.

round()

class set

setattr()

class slice

The slice builtin is the type that slice objects have.

sorted()

staticmethod()

class str

sum()

super()

class tuple

type()

zip()

Exceptions

exception ArithmeticError

exception AssertionError

exception AttributeError

exception BaseException

exception BrokenPipeError

exception ConnectionError

exception EOFError

exception Exception

exception ImportError

exception IndentationError

264 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

exception IndexError

exception KeyboardInterrupt

exception KeyError

exception LookupError

exception MemoryError

exception MpyError

Not a part of the CPython standard library

exception NameError

exception NotImplementedError

exception OSError

exception OverflowError

exception RuntimeError

exception ReloadException

ReloadException is used internally to deal with soft restarts.

Not a part of the CPython standard library

exception StopAsyncIteration

exception StopIteration

exception SyntaxError

exception SystemExit

exception TimeoutError

exception TypeError

exception UnicodeError

exception ValueError

exception ZeroDivisionError

Constants

Ellipsis

NotImplemented

1.8. Full Table of Contents 265

CircuitPython Documentation, Release 7.3.3

heapq – heap queue algorithm

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: heapq.

This module implements the min heap queue algorithm.

A heap queue is essentially a list that has its elements stored in such a way that the first item of the list is always the
smallest.

Functions

heapq.heappush(heap, item)

Push the item onto the heap.

heapq.heappop(heap)
Pop the first item from the heap, and return it. Raise IndexError if heap is empty.

The returned item will be the smallest item in the heap.

heapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

array – arrays of numeric data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, f, d (the latter 2 depending on the floating-point support).

Classes

class array.array(typecode[, iterable])
Create array with elements of given type. Initial contents of the array are given by an iterable. If it is not
provided, an empty array is created.

append(val)
Append new element val to the end of array, growing it.

extend(iterable)
Append new elements as contained in iterable to the end of array, growing it.

266 Chapter 1. CircuitPython

https://docs.python.org/3/library/heapq.html#module-heapq
https://en.wikipedia.org/wiki/Heap_%28data_structure%29
https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/glossary.html#term-iterable

CircuitPython Documentation, Release 7.3.3

binascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in both direc-
tions).

Functions

binascii.hexlify(data[, sep])
Convert the bytes in the data object to a hexadecimal representation. Returns a bytes object.

If the additional argument sep is supplied it is used as a separator between hexadecimal values.

binascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

binascii.a2b_base64(data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8. Returns a
bytes object.

binascii.b2a_base64(data)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character,
as a bytes object.

binascii.crc32(data, value=0, /)
Compute CRC-32, the 32-bit checksum of the bytes in data starting with an initial CRC of value. The default
initial CRC is 0. The algorithm is consistent with the ZIP file checksum.

collections – collection and container types

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: collections.

This module implements advanced collection and container types to hold/accumulate various objects.

1.8. Full Table of Contents 267

https://docs.python.org/3/library/binascii.html#module-binascii
https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc3548.html
https://docs.python.org/3/library/collections.html#module-collections

CircuitPython Documentation, Release 7.3.3

Classes

collections.deque(iterable, maxlen[, flags])
Deques (double-ended queues) are a list-like container that support O(1) appends and pops from either side of
the deque. New deques are created using the following arguments:

• iterable must be the empty tuple, and the new deque is created empty.

• maxlen must be specified and the deque will be bounded to this maximum length. Once the deque is full,
any new items added will discard items from the opposite end.

• The optional flags can be 1 to check for overflow when adding items.

As well as supporting bool and len, deque objects have the following methods:

deque.append(x)
Add x to the right side of the deque. Raises IndexError if overflow checking is enabled and there is no more
room left.

deque.popleft()

Remove and return an item from the left side of the deque. Raises IndexError if no items are present.

collections.namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A namedtuple is
a subclass of tuple which allows to access its fields not just by numeric index, but also with an attribute access
syntax using symbolic field names. Fields is a sequence of strings specifying field names. For compatibility with
CPython it can also be a a string with space-separated field named (but this is less efficient). Example of use:

from collections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

collections.OrderedDict(...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is iterated over,
keys/items are returned in the order they were added:

from collections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():

print(k, v)

Output:

z 1
a 2

(continues on next page)

268 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

w 5
b 3

errno – system error codes

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: errno.

This module provides access to symbolic error codes for OSError exception. A particular inventory of codes depends
on MicroPython port.

Constants

EEXIST, EAGAIN, etc.

Error codes, based on ANSI C/POSIX standard. All error codes start with “E”. As mentioned above, inventory
of the codes depends on MicroPython port. Errors are usually accessible as exc.args[0] where exc is an
instance of OSError. Usage example:

try:
os.mkdir("my_dir")

except OSError as exc:
if exc.args[0] == errno.EEXIST:

print("Directory already exists")

errno.errorcode

Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print(errno.errorcode[errno.EEXIST])
EEXIST

gc – control the garbage collector

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: gc.

1.8. Full Table of Contents 269

https://docs.python.org/3/library/errno.html#module-errno
https://docs.python.org/3/library/gc.html#module-gc

CircuitPython Documentation, Release 7.3.3

Functions

gc.enable()

Enable automatic garbage collection.

gc.disable()

Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

gc.collect()

Run a garbage collection.

gc.mem_alloc()

Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is a MicroPython extension.

gc.mem_free()

Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython

This function is a MicroPython extension.

gc.threshold([amount])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allo-
cation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been allocated (in total, since the previous
time such an amount of bytes have been allocated). amount is usually specified as less than the full heap size,
with the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope that an
early collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of which
will vary from application to application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1 means a
disabled allocation threshold.

Difference to CPython

This function is a a MicroPython extension. CPython has a similar function - set_threshold(), but due to
different GC implementations, its signature and semantics are different.

270 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

hashlib – hashing algorithms

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: hashlib.

This module implements binary data hashing algorithms. The exact inventory of available algorithms depends on a
board. Among the algorithms which may be implemented:

• SHA256 - The current generation, modern hashing algorithm (of SHA2 series). It is suitable for
cryptographically-secure purposes. Included in the MicroPython core and any board is recommended to pro-
vide this, unless it has particular code size constraints.

• SHA1 - A previous generation algorithm. Not recommended for new usages, but SHA1 is a part of number of
Internet standards and existing applications, so boards targeting network connectivity and interoperability will
try to provide this.

• MD5 - A legacy algorithm, not considered cryptographically secure. Only selected boards, targeting interoper-
ability with legacy applications, will offer this.

Constructors

class hashlib.sha256([data])
Create an SHA256 hasher object and optionally feed data into it.

class hashlib.sha1([data])
Create an SHA1 hasher object and optionally feed data into it.

class hashlib.md5([data])
Create an MD5 hasher object and optionally feed data into it.

Methods

hash.update(data)
Feed more binary data into hash.

hash.digest()

Return hash for all data passed through hash, as a bytes object. After this method is called, more data cannot be
fed into the hash any longer.

hash.hexdigest()

This method is NOT implemented. Use binascii.hexlify(hash.digest()) to achieve a similar effect.

1.8. Full Table of Contents 271

https://docs.python.org/3/library/hashlib.html#module-hashlib

CircuitPython Documentation, Release 7.3.3

io – input/output streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: io.

This module contains additional types of stream (file-like) objects and helper functions.

Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior of all the concrete classes, adhere to few
dichotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and made implicit
to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are currently
unbuffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already perform buffering
on their side. Adding another layer of buffering is counter- productive (an issue known as “bufferbloat”) and takes
precious memory. Note that there still cases where buffering may be useful, so we may introduce optional buffering
support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” - it’s whether a stream may incur short
read/writes or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly for writes. In
CPython, unbuffered streams are automatically short operation susceptible, while buffered are guarantee against them.
The no short read/writes is an important trait, as it allows to develop more concise and efficient programs - something
which is highly desirable for MicroPython. So, while MicroPython doesn’t support buffered streams, it still provides
for no-short-operations streams. Whether there will be short operations or not depends on each particular class’ needs,
but developers are strongly advised to favor no-short-operations behavior for the reasons stated above. For example,
MicroPython sockets are guaranteed to avoid short read/writes. Actually, at this time, there is no example of a short-
operations stream class in the core, and one would be a port-specific class, where such a need is governed by hardware
peculiarities.

The no-short-operations behavior gets tricky in case of non-blocking streams, blocking vs non-blocking behavior being
another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never wait for data either to
arrive or be written - they read/write whatever possible, or signal lack of data (or ability to write data). Clearly,
this conflicts with “no-short-operations” policy, and indeed, a case of non-blocking buffered (and this no-short-ops)
streams is convoluted in CPython - in some places, such combination is prohibited, in some it’s undefined or just not
documented, in some cases it raises verbose exceptions. The matter is much simpler in MicroPython: non-blocking
stream are important for efficient asynchronous operations, so this property prevails on the “no-short-ops” one. So,
while blocking streams will avoid short reads/writes whenever possible (the only case to get a short read is if end of
file is reached, or in case of error (but errors don’t return short data, but raise exceptions)), non-blocking streams may
produce short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython text streams
are inherently buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases for which we may introduce
buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base classes corresponding to the hierarchy above, and
it’s not possible to implement, or subclass, a stream class in pure Python.

272 Chapter 1. CircuitPython

https://docs.python.org/3/library/io.html#module-io

CircuitPython Documentation, Release 7.3.3

Functions

io.open(name, mode='r', **kwargs)
Open a file. Builtin open() function is aliased to this function. All ports (which provide access to file system)
are required to support mode parameter, but support for other arguments vary by port.

Classes

class io.FileIO(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate this class
directly.

class io.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this class
directly.

class io.StringIO([string])
class io.BytesIO([string])

In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file opened
with “t” modifier). BytesIO is used for binary-mode I/O (similar to a normal file opened with “b” modifier).
Initial contents of file-like objects can be specified with string parameter (should be normal string for StringIO
or bytes object for BytesIO). All the usual file methods like read(), write(), seek(), flush(), close()
are available on these objects, and additionally, a following method:

getvalue()

Get the current contents of the underlying buffer which holds data.

json – JSON encoding and decoding

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

Functions

json.dump(obj, stream)

Serialise obj to a JSON string, writing it to the given stream.

json.dumps(obj)
Return obj represented as a JSON string.

json.load(stream)

Parse the given stream, interpreting it as a JSON string and deserialising the data to a Python object. The
resulting object is returned.

Parsing continues until end-of-file is encountered. A ValueError is raised if the data in stream is not correctly
formed.

json.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

1.8. Full Table of Contents 273

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/json.html#module-json

CircuitPython Documentation, Release 7.3.3

re – simple regular expressions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: re.

This module implements regular expression operations. Regular expression syntax supported is a subset of CPython
re module (and actually is a subset of POSIX extended regular expressions).

Supported operators and special sequences are:

.
Match any character.

[...]
Match set of characters. Individual characters and ranges are supported, including negated sets (e.g. [^a-c]).

^
Match the start of the string.

$
Match the end of the string.

?
Match zero or one of the previous sub-pattern.

*
Match zero or more of the previous sub-pattern.

+
Match one or more of the previous sub-pattern.

??
Non-greedy version of ?, match zero or one, with the preference for zero.

*?
Non-greedy version of *, match zero or more, with the preference for the shortest match.

+?
Non-greedy version of +, match one or more, with the preference for the shortest match.

|
Match either the left-hand side or the right-hand side sub-patterns of this operator.

(...)
Grouping. Each group is capturing (a substring it captures can be accessed with match.group() method).

\d
Matches digit. Equivalent to [0-9].

\D
Matches non-digit. Equivalent to [^0-9].

\s
Matches whitespace. Equivalent to [\t-\r].

\S
Matches non-whitespace. Equivalent to [^ \t-\r].

\w
Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].

\W
Matches non “word characters” (ASCII only). Equivalent to [^A-Za-z0-9_].

274 Chapter 1. CircuitPython

https://docs.python.org/3/library/re.html#module-re

CircuitPython Documentation, Release 7.3.3

\
Escape character. Any other character following the backslash, except for those listed above, is taken literally.
For example, * is equivalent to literal * (not treated as the * operator). Note that \r, \n, etc. are not handled
specially, and will be equivalent to literal letters r, n, etc. Due to this, it’s not recommended to use raw Python
strings (r"") for regular expressions. For example, r"\r\n" when used as the regular expression is equivalent
to "rn". To match CR character followed by LF, use "\r\n".

NOT SUPPORTED:

• counted repetitions ({m,n})

• named groups ((?P<name>...))

• non-capturing groups ((?:...))

• more advanced assertions (\b, \B)

• special character escapes like \r, \n - use Python’s own escaping instead

• etc.

Example:

import re

As re doesn't support escapes itself, use of r"" strings is not
recommended.
regex = re.compile("[\r\n]")

regex.split("line1\rline2\nline3\r\n")

Result:
['line1', 'line2', 'line3', '', '']

Functions

re.compile(regex_str[, flags])
Compile regular expression, return regex object.

re.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

re.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match , this will search string for first position which matches
regex (which still may be 0 if regex is anchored).

re.sub(regex_str, replace, string, count=0, flags=0, /)
Compile regex_str and search for it in string, replacing all matches with replace, and returning the new string.

replace can be a string or a function. If it is a string then escape sequences of the form \<number> and \
g<number> can be used to expand to the corresponding group (or an empty string for unmatched groups). If
replace is a function then it must take a single argument (the match) and should return a replacement string.

If count is specified and non-zero then substitution will stop after this many substitutions are made. The flags
argument is ignored.

Note: availability of this function depends on MicroPython port.

1.8. Full Table of Contents 275

CircuitPython Documentation, Release 7.3.3

re.DEBUG

Flag value, display debug information about compiled expression. (Availability depends on MicroPython port.)

Regex objects

Compiled regular expression. Instances of this class are created using re.compile().

regex.match(string)
regex.search(string)
regex.sub(replace, string, count=0, flags=0, /)

Similar to the module-level functions match(), search() and sub(). Using methods is (much) more efficient
if the same regex is applied to multiple strings.

regex.split(string, max_split=-1, /)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list
of strings (there may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods, and passed to the replacement function in sub().

match.group(index)
Return matching (sub)string. index is 0 for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

match.groups()

Return a tuple containing all the substrings of the groups of the match.

Note: availability of this method depends on MicroPython port.

match.start([index])
match.end([index])

Return the index in the original string of the start or end of the substring group that was matched. index defaults
to the entire group, otherwise it will select a group.

Note: availability of these methods depends on MicroPython port.

match.span([index])
Returns the 2-tuple (match.start(index), match.end(index)).

Note: availability of this method depends on MicroPython port.

sys – system specific functions

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: sys.

276 Chapter 1. CircuitPython

https://docs.python.org/3/library/sys.html#module-sys

CircuitPython Documentation, Release 7.3.3

Functions

sys.exit(retval=0, /)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit exception.
If an argument is given, its value given as an argument to SystemExit.

Constants

sys.argv

A mutable list of arguments the current program was started with.

sys.byteorder

The byte order of the system ("little" or "big").

sys.implementation

Object with information about the current Python implementation. For CircuitPython, it has following attributes:

• name - string “circuitpython”

• version - tuple (major, minor, micro), e.g. (1, 7, 0)

This object is the recommended way to distinguish CircuitPython from other Python implementations (note that
it still may not exist in the very minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in Circuit-
Python.

sys.maxsize

Maximum value which a native integer type can hold on the current platform, or maximum value representable
by CircuitPython integer type, if it’s smaller than platform max value (that is the case for CircuitPython ports
without long int support).

This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended to not
compare this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:

bits += 1
v >>= 1

if bits > 32:
64-bit (or more) platform
...

else:
32-bit (or less) platform
Note that on 32-bit platform, value of bits may be less than 32
(e.g. 31) due to peculiarities described above, so use "> 16",
"> 32", "> 64" style of comparisons.

sys.modules

Dictionary of loaded modules. On some ports, it may not include builtin modules.

1.8. Full Table of Contents 277

CircuitPython Documentation, Release 7.3.3

sys.path

A mutable list of directories to search for imported modules.

Difference to CPython

On MicroPython, an entry with the value ".frozen" will indicate that import should search frozen modules at
that point in the search. If no frozen module is found then search will not look for a directory called .frozen,
instead it will continue with the next entry in sys.path.

sys.platform

The platform that CircuitPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of the chip on a board, e.g. "MicroChip SAMD51". It thus can
be used to distinguish one board from another. If you need to check whether your program runs on CircuitPython
(vs other Python implementation), use sys.implementation instead.

sys.stderr

Standard error stream.

sys.stdin

Standard input stream.

sys.stdout

Standard output stream.

sys.version

Python language version that this implementation conforms to, as a string.

sys.version_info

Python language version that this implementation conforms to, as a tuple of ints.

Difference to CPython

Only the first three version numbers (major, minor, micro) are supported and they can be referenced
only by index, not by name.

uasyncio— asynchronous I/O scheduler

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: asyncio

Example:

import uasyncio

async def blink(led, period_ms):
while True:

led.on()
await uasyncio.sleep_ms(5)
led.off()
await uasyncio.sleep_ms(period_ms)

async def main(led1, led2):
(continues on next page)

278 Chapter 1. CircuitPython

https://docs.python.org/3.8/library/asyncio.html

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

uasyncio.create_task(blink(led1, 700))
uasyncio.create_task(blink(led2, 400))
await uasyncio.sleep_ms(10_000)

Running on a pyboard
from pyb import LED
uasyncio.run(main(LED(1), LED(2)))

Running on a generic board
from machine import Pin
uasyncio.run(main(Pin(1), Pin(2)))

Core functions

uasyncio.create_task(coro)
Create a new task from the given coroutine and schedule it to run.

Returns the corresponding Task object.

uasyncio.current_task()

Return the Task object associated with the currently running task.

uasyncio.run(coro)
Create a new task from the given coroutine and run it until it completes.

Returns the value returned by coro.

uasyncio.sleep(t)
Sleep for t seconds (can be a float).

This is a coroutine.

uasyncio.sleep_ms(t)
Sleep for t milliseconds.

This is a coroutine, and a MicroPython extension.

Additional functions

uasyncio.wait_for(awaitable, timeout)
Wait for the awaitable to complete, but cancel it if it takes longer that timeout seconds. If awaitable is not a task
then a task will be created from it.

If a timeout occurs, it cancels the task and raises asyncio.TimeoutError: this should be trapped by the caller.

Returns the return value of awaitable.

This is a coroutine.

uasyncio.wait_for_ms(awaitable, timeout)
Similar to wait_for but timeout is an integer in milliseconds.

This is a coroutine, and a MicroPython extension.

1.8. Full Table of Contents 279

CircuitPython Documentation, Release 7.3.3

uasyncio.gather(*awaitables, return_exceptions=False)
Run all awaitables concurrently. Any awaitables that are not tasks are promoted to tasks.

Returns a list of return values of all awaitables.

This is a coroutine.

class Task

class uasyncio.Task

This object wraps a coroutine into a running task. Tasks can be waited on using await task, which will wait
for the task to complete and return the return value of the task.

Tasks should not be created directly, rather use create_task to create them.

Task.cancel()

Cancel the task by injecting a CancelledError into it. The task may or may not ignore this exception.

class Event

class uasyncio.Event

Create a new event which can be used to synchronise tasks. Events start in the cleared state.

Event.is_set()

Returns True if the event is set, False otherwise.

Event.set()

Set the event. Any tasks waiting on the event will be scheduled to run.

Event.clear()

Clear the event.

Event.wait()

Wait for the event to be set. If the event is already set then it returns immediately.

This is a coroutine.

class Lock

class uasyncio.Lock

Create a new lock which can be used to coordinate tasks. Locks start in the unlocked state.

In addition to the methods below, locks can be used in an async with statement.

Lock.locked()

Returns True if the lock is locked, otherwise False.

Lock.acquire()

Wait for the lock to be in the unlocked state and then lock it in an atomic way. Only one task can acquire the lock
at any one time.

This is a coroutine.

Lock.release()

Release the lock. If any tasks are waiting on the lock then the next one in the queue is scheduled to run and the
lock remains locked. Otherwise, no tasks are waiting an the lock becomes unlocked.

280 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

TCP stream connections

uasyncio.open_connection(host, port)
Open a TCP connection to the given host and port. The host address will be resolved using socket.
getaddrinfo, which is currently a blocking call.

Returns a pair of streams: a reader and a writer stream. Will raise a socket-specific OSError if the host could
not be resolved or if the connection could not be made.

This is a coroutine.

uasyncio.start_server(callback, host, port, backlog=5)
Start a TCP server on the given host and port. The callback will be called with incoming, accepted connections,
and be passed 2 arguments: reader and writer streams for the connection.

Returns a Server object.

This is a coroutine.

class uasyncio.Stream

This represents a TCP stream connection. To minimise code this class implements both a reader and a writer,
and both StreamReader and StreamWriter alias to this class.

Stream.get_extra_info(v)
Get extra information about the stream, given by v. The valid values for v are: peername.

Stream.close()

Close the stream.

Stream.wait_closed()

Wait for the stream to close.

This is a coroutine.

Stream.read(n)
Read up to n bytes and return them.

This is a coroutine.

Stream.readinto(buf)
Read up to n bytes into buf with n being equal to the length of buf.

Return the number of bytes read into buf.

This is a coroutine, and a MicroPython extension.

Stream.readexactly(n)
Read exactly n bytes and return them as a bytes object.

Raises an EOFError exception if the stream ends before reading n bytes.

This is a coroutine.

Stream.readline()

Read a line and return it.

This is a coroutine.

Stream.write(buf)
Accumulated buf to the output buffer. The data is only flushed when Stream.drain is called. It is recommended
to call Stream.drain immediately after calling this function.

1.8. Full Table of Contents 281

https://docs.python.org/3/library/socket.html#socket.getaddrinfo
https://docs.python.org/3/library/socket.html#socket.getaddrinfo

CircuitPython Documentation, Release 7.3.3

Stream.drain()

Drain (write) all buffered output data out to the stream.

This is a coroutine.

class uasyncio.Server

This represents the server class returned from start_server. It can be used in an async with statement to
close the server upon exit.

Server.close()

Close the server.

Server.wait_closed()

Wait for the server to close.

This is a coroutine.

Event Loop

uasyncio.get_event_loop()

Return the event loop used to schedule and run tasks. See Loop.

uasyncio.new_event_loop()

Reset the event loop and return it.

Note: since MicroPython only has a single event loop this function just resets the loop’s state, it does not create
a new one.

class uasyncio.Loop

This represents the object which schedules and runs tasks. It cannot be created, use get_event_loop instead.

Loop.create_task(coro)
Create a task from the given coro and return the new Task object.

Loop.run_forever()

Run the event loop until stop() is called.

Loop.run_until_complete(awaitable)
Run the given awaitable until it completes. If awaitable is not a task then it will be promoted to one.

Loop.stop()

Stop the event loop.

Loop.close()

Close the event loop.

Loop.set_exception_handler(handler)
Set the exception handler to call when a Task raises an exception that is not caught. The handler should accept
two arguments: (loop, context).

Loop.get_exception_handler()

Get the current exception handler. Returns the handler, or None if no custom handler is set.

Loop.default_exception_handler(context)
The default exception handler that is called.

Loop.call_exception_handler(context)
Call the current exception handler. The argument context is passed through and is a dictionary containing keys:
'message', 'exception', 'future'.

282 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

uctypes – access binary data in a structured way

This module implements “foreign data interface” for MicroPython. The idea behind it is similar to CPython’s ctypes
modules, but the actual API is different, streamlined and optimized for small size. The basic idea of the module is
to define data structure layout with about the same power as the C language allows, and then access it using familiar
dot-syntax to reference sub-fields.

Warning: uctypesmodule allows access to arbitrary memory addresses of the machine (including I/O and control
registers). Uncareful usage of it may lead to crashes, data loss, and even hardware malfunction.

See also:

Module struct
Standard Python way to access binary data structures (doesn’t scale well to large and complex structures).

Usage examples:

import uctypes

Example 1: Subset of ELF file header
https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {

"EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
"EI_DATA": 0x5 | uctypes.UINT8,
"e_machine": 0x12 | uctypes.UINT16,

}

"f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_ENDIAN.
→˓"
print("machine:", hex(header.e_machine))

Example 2: In-memory data structure, with pointers
COORD = {

"x": 0 | uctypes.FLOAT32,
"y": 4 | uctypes.FLOAT32,

}

STRUCT1 = {
"data1": 0 | uctypes.UINT8,
"data2": 4 | uctypes.UINT32,
"ptr": (8 | uctypes.PTR, COORD),

}

Suppose you have address of a structure of type STRUCT1 in "addr"
uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)

(continues on next page)

1.8. Full Table of Contents 283

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {

"WWDG_CR": (0, {
BFUINT32 here means size of the WWDG_CR register
"WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
"WWDG_CFR": (4, {

"EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
"W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
}

WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)

WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which encodes field names as keys and other prop-
erties required to access them as associated values:

{
"field1": <properties>,
"field2": <properties>,
...

}

Currently, uctypes requires explicit specification of offsets for each field. Offset are given in bytes from the structure
start.

Following are encoding examples for various field types:

• Scalar types:

"field_name": offset | uctypes.UINT32

in other words, the value is a scalar type identifier ORed with a field offset (in bytes) from the start of the structure.

• Recursive structures:

"sub": (offset, {
"b0": 0 | uctypes.UINT8,
"b1": 1 | uctypes.UINT8,

})

i.e. value is a 2-tuple, first element of which is an offset, and second is a structure descriptor dictionary (note:
offsets in recursive descriptors are relative to the structure it defines). Of course, recursive structures can be

284 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

specified not just by a literal dictionary, but by referring to a structure descriptor dictionary (defined earlier) by
name.

• Arrays of primitive types:

"arr": (offset | uctypes.ARRAY, size | uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed with offset, and second is scalar element type
ORed number of elements in the array.

• Arrays of aggregate types:

"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed with offset, second is a number of elements
in the array, and third is a descriptor of element type.

• Pointer to a primitive type:

"ptr": (offset | uctypes.PTR, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, and second is a scalar element type.

• Pointer to an aggregate type:

"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, second is a descriptor of type pointed
to.

• Bitfields:

"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.
→˓BF_LEN,

i.e. value is a type of scalar value containing given bitfield (typenames are similar to scalar types, but prefixes
with BF), ORed with offset for scalar value containing the bitfield, and further ORed with values for bit position
and bit length of the bitfield within the scalar value, shifted by BF_POS and BF_LEN bits, respectively. A
bitfield position is counted from the least significant bit of the scalar (having position of 0), and is the number
of right-most bit of a field (in other words, it’s a number of bits a scalar needs to be shifted right to extract the
bitfield).

In the example above, first a UINT16 value will be extracted at offset 0 (this detail may be important when
accessing hardware registers, where particular access size and alignment are required), and then bitfield whose
rightmost bit is lsbit bit of this UINT16, and length is bitsize bits, will be extracted. For example, if lsbit is 0 and
bitsize is 8, then effectively it will access least-significant byte of UINT16.

Note that bitfield operations are independent of target byte endianness, in particular, example above will access
least-significant byte of UINT16 in both little- and big-endian structures. But it depends on the least significant
bit being numbered 0. Some targets may use different numbering in their native ABI, but uctypes always uses
the normalized numbering described above.

1.8. Full Table of Contents 285

CircuitPython Documentation, Release 7.3.3

Module contents

class uctypes.struct(addr, descriptor, layout_type=NATIVE, /)
Instantiate a “foreign data structure” object based on structure address in memory, descriptor (encoded as a
dictionary), and layout type (see below).

uctypes.LITTLE_ENDIAN

Layout type for a little-endian packed structure. (Packed means that every field occupies exactly as many bytes
as defined in the descriptor, i.e. the alignment is 1).

uctypes.BIG_ENDIAN

Layout type for a big-endian packed structure.

uctypes.NATIVE

Layout type for a native structure - with data endianness and alignment conforming to the ABI of the system on
which MicroPython runs.

uctypes.sizeof(struct, layout_type=NATIVE, /)
Return size of data structure in bytes. The struct argument can be either a structure class or a specific instantiated
structure object (or its aggregate field).

uctypes.addressof(obj)
Return address of an object. Argument should be bytes, bytearray or other object supporting buffer protocol (and
address of this buffer is what actually returned).

uctypes.bytes_at(addr, size)
Capture memory at the given address and size as bytes object. As bytes object is immutable, memory is actually
duplicated and copied into bytes object, so if memory contents change later, created object retains original value.

uctypes.bytearray_at(addr, size)
Capture memory at the given address and size as bytearray object. Unlike bytes_at() function above, memory
is captured by reference, so it can be both written too, and you will access current value at the given memory
address.

uctypes.UINT8

uctypes.INT8

uctypes.UINT16

uctypes.INT16

uctypes.UINT32

uctypes.INT32

uctypes.UINT64

uctypes.INT64

Integer types for structure descriptors. Constants for 8, 16, 32, and 64 bit types are provided, both signed and
unsigned.

uctypes.FLOAT32

uctypes.FLOAT64

Floating-point types for structure descriptors.

uctypes.VOID

VOID is an alias for UINT8, and is provided to conveniently define C’s void pointers: (uctypes.PTR, uctypes.
VOID).

uctypes.PTR

286 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

uctypes.ARRAY

Type constants for pointers and arrays. Note that there is no explicit constant for structures, it’s implicit: an
aggregate type without PTR or ARRAY flags is a structure.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can instantiate a specific structure instance at a given
memory address using uctypes.struct() constructor. Memory address usually comes from following sources:

• Predefined address, when accessing hardware registers on a baremetal system. Lookup these addresses in
datasheet for a particular MCU/SoC.

• As a return value from a call to some FFI (Foreign Function Interface) function.

• From uctypes.addressof(), when you want to pass arguments to an FFI function, or alternatively, to access
some data for I/O (for example, data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot notation: my_struct.substruct1.field1. If
a field is of scalar type, getting it will produce a primitive value (Python integer or float) corresponding to the value
contained in a field. A scalar field can also be assigned to.

If a field is an array, its individual elements can be accessed with the standard subscript operator [] - both read and
assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax (corresponding to C * operator, though [0] works in C
too). Subscripting a pointer with other integer values but 0 are also supported, with the same semantics as in C.

Summing up, accessing structure fields generally follows the C syntax, except for pointer dereference, when you need
to use [0] operator instead of *.

Limitations

1. Accessing non-scalar fields leads to allocation of intermediate objects to represent them. This means that special
care should be taken to layout a structure which needs to be accessed when memory allocation is disabled (e.g. from
an interrupt). The recommendations are:

• Avoid accessing nested structures. For example, instead of mcu_registers.peripheral_a.register1, de-
fine separate layout descriptors for each peripheral, to be accessed as peripheral_a.register1. Or just
cache a particular peripheral: peripheral_a = mcu_registers.peripheral_a. If a register consists of
multiple bitfields, you would need to cache references to a particular register: reg_a = mcu_registers.
peripheral_a.reg_a.

• Avoid other non-scalar data, like arrays. For example, instead of peripheral_a.register[0] use
peripheral_a.register0. Again, an alternative is to cache intermediate values, e.g. register0 =
peripheral_a.register[0].

2. Range of offsets supported by the uctypes module is limited. The exact range supported is considered an imple-
mentation detail, and the general suggestion is to split structure definitions to cover from a few kilobytes to a few dozen
of kilobytes maximum. In most cases, this is a natural situation anyway, e.g. it doesn’t make sense to define all registers
of an MCU (spread over 32-bit address space) in one structure, but rather a peripheral block by peripheral block. In
some extreme cases, you may need to split a structure in several parts artificially (e.g. if accessing native data structure
with multi-megabyte array in the middle, though that would be a very synthetic case).

1.8. Full Table of Contents 287

CircuitPython Documentation, Release 7.3.3

select – wait for events on a set of streams

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: select.

This module provides functions to efficiently wait for events on multiple stream objects (select streams which are
ready for operations).

Functions

select.poll()

Create an instance of the Poll class.

select.select(rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Poll is
recommended instead.

class Poll

Methods

poll.register(obj[, eventmask])
Register stream obj for polling. eventmask is logical OR of:

• select.POLLIN - data available for reading

• select.POLLOUT - more data can be written

Note that flags like select.POLLHUP and select.POLLERR are not valid as input eventmask (these are unso-
licited events which will be returned from poll() regardless of whether they are asked for). This semantics is
per POSIX.

eventmask defaults to select.POLLIN | select.POLLOUT.

It is OK to call this function multiple times for the same obj. Successive calls will update obj’s eventmask to the
value of eventmask (i.e. will behave as modify()).

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj. If obj is not registered, OSError is raised with error of ENOENT.

288 Chapter 1. CircuitPython

https://docs.python.org/3/library/select.html#module-select

CircuitPython Documentation, Release 7.3.3

poll.poll(timeout=-1, /)
Wait for at least one of the registered objects to become ready or have an exceptional condition, with optional
timeout in milliseconds (if timeout arg is not specified or -1, there is no timeout).

Returns list of (obj, event, . . .) tuples. There may be other elements in tuple, depending on a platform and
version, so don’t assume that its size is 2. The event element specifies which events happened with a stream and
is a combination of select.POLL* constants described above. Note that flags select.POLLHUP and select.
POLLERR can be returned at any time (even if were not asked for), and must be acted on accordingly (the corre-
sponding stream unregistered from poll and likely closed), because otherwise all further invocations of poll()
may return immediately with these flags set for this stream again.

In case of timeout, an empty list is returned.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

poll.ipoll(timeout=-1, flags=0, /)
Like poll.poll(), but instead returns an iterator which yields a callee-owned tuples. This function pro-
vides efficient, allocation-free way to poll on streams.

If flags is 1, one-shot behaviour for events is employed: streams for which events happened will have their event
masks automatically reset (equivalent to poll.modify(obj, 0)), so new events for such a stream won’t be
processed until new mask is set with poll.modify(). This behaviour is useful for asynchronous I/O schedulers.

Difference to CPython

This function is a MicroPython extension.

zlib – zlib decompression

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: zlib.

This module allows to decompress binary data compressed with DEFLATE algorithm (commonly used in zlib library
and gzip archiver). Compression is not yet implemented.

1.8. Full Table of Contents 289

https://docs.python.org/3/library/zlib.html#module-zlib
https://en.wikipedia.org/wiki/DEFLATE

CircuitPython Documentation, Release 7.3.3

Functions

zlib.decompress(data, wbits=0, bufsize=0, /)
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-15,
the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be zlib stream
(with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE stream. bufsize parameter is for
compatibility with CPython and is ignored.

class zlib.DecompIO(stream, wbits=0, /)
Create a stream wrapper which allows transparent decompression of compressed data in another stream. This
allows to process compressed streams with data larger than available heap size. In addition to values described
in decompress(), wbits may take values 24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython

This class is MicroPython extension. It’s included on provisional basis and may be changed considerably or
removed in later versions.

Omitted functions in the string library

A few string operations are not enabled on small builds (usually non-Express), due to limited flash memory: string.
center(), string.partition(), string.splitlines(), string.reversed().

CircuitPython/MicroPython-specific libraries

Functionality specific to the CircuitPython/MicroPython implementation is available in the following libraries. These
libraries may change significantly or be removed in future versions of CircuitPython.

btree – simple BTree database

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

The btree module implements a simple key-value database using external storage (disk files, or in general case, a
random-access stream). Keys are stored sorted in the database, and besides efficient retrieval by a key value, a database
also supports efficient ordered range scans (retrieval of values with the keys in a given range). On the application
interface side, BTree database work as close a possible to a way standard dict type works, one notable difference is
that both keys and values must be bytes objects (so, if you want to store objects of other types, you need to serialize
them to bytes first).

The module is based on the well-known BerkelyDB library, version 1.xx.

Example:

import btree

First, we need to open a stream which holds a database
(continues on next page)

290 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

(continued from previous page)

This is usually a file, but can be in-memory database
using io.BytesIO, a raw flash partition, etc.
Oftentimes, you want to create a database file if it doesn't
exist and open if it exists. Idiom below takes care of this.
DO NOT open database with "a+b" access mode.
try:

f = open("mydb", "r+b")
except OSError:

f = open("mydb", "w+b")

Now open a database itself
db = btree.open(f)

The keys you add will be sorted internally in the database
db[b"3"] = b"three"
db[b"1"] = b"one"
db[b"2"] = b"two"

Assume that any changes are cached in memory unless
explicitly flushed (or database closed). Flush database
at the end of each "transaction".
db.flush()

Prints b'two'
print(db[b"2"])

Iterate over sorted keys in the database, starting from b"2"
until the end of the database, returning only values.
Mind that arguments passed to values() method are *key* values.
Prints:
b'two'
b'three'
for word in db.values(b"2"):

print(word)

del db[b"2"]

No longer true, prints False
print(b"2" in db)

Prints:
b"1"
b"3"
for key in db:

print(key)

db.close()

Don't forget to close the underlying stream!
f.close()

1.8. Full Table of Contents 291

CircuitPython Documentation, Release 7.3.3

Functions

btree.open(stream, *, flags=0, pagesize=0, cachesize=0, minkeypage=0)
Open a database from a random-access stream (like an open file). All other parameters are optional and
keyword-only, and allow to tweak advanced parameters of the database operation (most users will not need
them):

• flags - Currently unused.

• pagesize - Page size used for the nodes in BTree. Acceptable range is 512-65536. If 0, a port-specific
default will be used, optimized for port’s memory usage and/or performance.

• cachesize - Suggested memory cache size in bytes. For a board with enough memory using larger values
may improve performance. Cache policy is as follows: entire cache is not allocated at once; instead, ac-
cessing a new page in database will allocate a memory buffer for it, until value specified by cachesize is
reached. Then, these buffers will be managed using LRU (least recently used) policy. More buffers may
still be allocated if needed (e.g., if a database contains big keys and/or values). Allocated cache buffers
aren’t reclaimed.

• minkeypage - Minimum number of keys to store per page. Default value of 0 equivalent to 2.

Returns a BTree object, which implements a dictionary protocol (set of methods), and some additional methods
described below.

Methods

btree.close()

Close the database. It’s mandatory to close the database at the end of processing, as some unwritten data may be
still in the cache. Note that this does not close underlying stream with which the database was opened, it should be
closed separately (which is also mandatory to make sure that data flushed from buffer to the underlying storage).

btree.flush()

Flush any data in cache to the underlying stream.

btree.__getitem__(key)
btree.get(key, default=None, /)
btree.__setitem__(key, val)
btree.__delitem__(key)
btree.__contains__(key)

Standard dictionary methods.

btree.__iter__()

A BTree object can be iterated over directly (similar to a dictionary) to get access to all keys in order.

btree.keys([start_key[, end_key[, flags]]])
btree.values([start_key[, end_key[, flags]]])
btree.items([start_key[, end_key[, flags]]])

These methods are similar to standard dictionary methods, but also can take optional parameters to iterate over
a key sub-range, instead of the entire database. Note that for all 3 methods, start_key and end_key arguments
represent key values. For example, values() method will iterate over values corresponding to they key range
given. None values for start_key means “from the first key”, no end_key or its value of None means “until the
end of database”. By default, range is inclusive of start_key and exclusive of end_key, you can include end_key
in iteration by passing flags of btree.INCL. You can iterate in descending key direction by passing flags of
btree.DESC. The flags values can be ORed together.

292 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Constants

btree.INCL

A flag for keys(), values(), items() methods to specify that scanning should be inclusive of the end key.

btree.DESC

A flag for keys(), values(), items() methods to specify that scanning should be in descending direction of
keys.

framebuf — frame buffer manipulation

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module provides a general frame buffer which can be used to create bitmap images, which can then be sent to a
display.

class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with pixels, lines, rectangles, text and even
other FrameBuffer’s. It is useful when generating output for displays.

For example:

import framebuf

FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = framebuf.FrameBuffer(bytearray(100 * 10 * 2), 100, 10, framebuf.RGB565)

fbuf.fill(0)
fbuf.text('MicroPython!', 0, 0, 0xffff)
fbuf.hline(0, 9, 96, 0xffff)

Constructors

class framebuf.FrameBuffer(buffer, width, height, format, stride=width, /)
Construct a FrameBuffer object. The parameters are:

• buffer is an object with a buffer protocol which must be large enough to contain every pixel defined by the
width, height and format of the FrameBuffer.

• width is the width of the FrameBuffer in pixels

• height is the height of the FrameBuffer in pixels

• format specifies the type of pixel used in the FrameBuffer; permissible values are listed under Constants
below. These set the number of bits used to encode a color value and the layout of these bits in buffer.
Where a color value c is passed to a method, c is a small integer with an encoding that is dependent on the
format of the FrameBuffer.

1.8. Full Table of Contents 293

CircuitPython Documentation, Release 7.3.3

• stride is the number of pixels between each horizontal line of pixels in the FrameBuffer. This defaults to
width but may need adjustments when implementing a FrameBuffer within another larger FrameBuffer or
screen. The buffer size must accommodate an increased step size.

One must specify valid buffer, width, height, format and optionally stride. Invalid buffer size or dimensions may
lead to unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.

FrameBuffer.fill(c)
Fill the entire FrameBuffer with the specified color.

FrameBuffer.pixel(x, y[, c])
If c is not given, get the color value of the specified pixel. If c is given, set the specified pixel to the given color.

FrameBuffer.hline(x, y, w, c)

FrameBuffer.vline(x, y, h, c)

FrameBuffer.line(x1, y1, x2, y2, c)
Draw a line from a set of coordinates using the given color and a thickness of 1 pixel. The line method draws
the line up to a second set of coordinates whereas the hline and vline methods draw horizontal and vertical
lines respectively up to a given length.

FrameBuffer.rect(x, y, w, h, c)

FrameBuffer.fill_rect(x, y, w, h, c)
Draw a rectangle at the given location, size and color. The rect method draws only a 1 pixel outline whereas
the fill_rect method draws both the outline and interior.

Drawing text

FrameBuffer.text(s, x, y[, c])
Write text to the FrameBuffer using the the coordinates as the upper-left corner of the text. The color of the text
can be defined by the optional argument but is otherwise a default value of 1. All characters have dimensions of
8x8 pixels and there is currently no way to change the font.

Other methods

FrameBuffer.scroll(xstep, ystep)
Shift the contents of the FrameBuffer by the given vector. This may leave a footprint of the previous colors in
the FrameBuffer.

FrameBuffer.blit(fbuf, x, y, key=-1, palette=None)
Draw another FrameBuffer on top of the current one at the given coordinates. If key is specified then it should be
a color integer and the corresponding color will be considered transparent: all pixels with that color value will
not be drawn.

The palette argument enables blitting between FrameBuffers with differing formats. Typical usage is to render
a monochrome or grayscale glyph/icon to a color display. The palette is a FrameBuffer instance whose format
is that of the current FrameBuffer. The palette height is one pixel and its pixel width is the number of colors

294 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

in the source FrameBuffer. The palette for an N-bit source needs 2**N pixels; the palette for a monochrome
source would have 2 pixels representing background and foreground colors. The application assigns a color to
each pixel in the palette. The color of the current pixel will be that of that palette pixel whose x position is the
color of the corresponding source pixel.

Constants

framebuf.MONO_VLSB

Monochrome (1-bit) color format This defines a mapping where the bits in a byte are vertically mapped with bit 0
being nearest the top of the screen. Consequently each byte occupies 8 vertical pixels. Subsequent bytes appear
at successive horizontal locations until the rightmost edge is reached. Further bytes are rendered at locations
starting at the leftmost edge, 8 pixels lower.

framebuf.MONO_HLSB

Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 7 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.MONO_HMSB

Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 0 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.RGB565

Red Green Blue (16-bit, 5+6+5) color format

framebuf.GS2_HMSB

Grayscale (2-bit) color format

framebuf.GS4_HMSB

Grayscale (4-bit) color format

framebuf.GS8

Grayscale (8-bit) color format

micropython – access and control MicroPython internals

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

Functions

micropython.const(expr)
Used to declare that the expression is a constant so that the compile can optimise it. The use of this function
should be as follows:

1.8. Full Table of Contents 295

CircuitPython Documentation, Release 7.3.3

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from outside the module they are declared
in. On the other hand, if a constant begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is provided as part of the
micropython module mainly so that scripts can be written which run under both CPython and MicroPython,
by following the above pattern.

micropython.opt_level([level])
If level is given then this function sets the optimisation level for subsequent compilation of scripts, and returns
None. Otherwise it returns the current optimisation level.

The optimisation level controls the following compilation features:

• Assertions: at level 0 assertion statements are enabled and compiled into the bytecode; at levels 1 and
higher assertions are not compiled.

• Built-in __debug__ variable: at level 0 this variable expands to True; at levels 1 and higher it expands to
False.

• Source-code line numbers: at levels 0, 1 and 2 source-code line number are stored along with the bytecode
so that exceptions can report the line number they occurred at; at levels 3 and higher line numbers are not
stored.

The default optimisation level is usually level 0.

micropython.mem_info([verbose])
Print information about currently used memory. If the verbose argument is given then extra information is printed.

The information that is printed is implementation dependent, but currently includes the amount of stack and heap
used. In verbose mode it prints out the entire heap indicating which blocks are used and which are free.

micropython.qstr_info([verbose])
Print information about currently interned strings. If the verbose argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the number of interned strings
and the amount of RAM they use. In verbose mode it prints out the names of all RAM-interned strings.

micropython.stack_use()

Return an integer representing the current amount of stack that is being used. The absolute value of this is not
particularly useful, rather it should be used to compute differences in stack usage at different points.

micropython.heap_lock()

micropython.heap_unlock()

micropython.heap_locked()

Lock or unlock the heap. When locked no memory allocation can occur and a MemoryError will be raised if
any heap allocation is attempted. heap_locked() returns a true value if the heap is currently locked.

These functions can be nested, ie heap_lock() can be called multiple times in a row and the lock-depth will
increase, and then heap_unlock() must be called the same number of times to make the heap available again.

296 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

Both heap_unlock() and heap_locked() return the current lock depth (after unlocking for the former) as a
non-negative integer, with 0 meaning the heap is not locked.

If the REPL becomes active with the heap locked then it will be forcefully unlocked.

Note: heap_locked() is not enabled on most ports by default, requires
MICROPY_PY_MICROPYTHON_HEAP_LOCKED.

micropython.kbd_intr(chr)
Set the character that will raise a KeyboardInterrupt exception. By default this is set to 3 during script
execution, corresponding to Ctrl-C. Passing -1 to this function will disable capture of Ctrl-C, and passing 3 will
restore it.

This function can be used to prevent the capturing of Ctrl-C on the incoming stream of characters that is usually
used for the REPL, in case that stream is used for other purposes.

micropython.schedule(func, arg)
Schedule the function func to be executed “very soon”. The function is passed the value arg as its single argument.
“Very soon” means that the MicroPython runtime will do its best to execute the function at the earliest possible
time, given that it is also trying to be efficient, and that the following conditions hold:

• A scheduled function will never preempt another scheduled function.

• Scheduled functions are always executed “between opcodes” which means that all fundamental Python
operations (such as appending to a list) are guaranteed to be atomic.

• A given port may define “critical regions” within which scheduled functions will never be executed. Func-
tions may be scheduled within a critical region but they will not be executed until that region is exited. An
example of a critical region is a preempting interrupt handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ. Such an IRQ puts restrictions on the
code that runs in the IRQ (for example the heap may be locked) and scheduling a function to call later will lift
those restrictions.

Note: If schedule() is called from a preempting IRQ, when memory allocation is not allowed and the callback
to be passed to schedule() is a bound method, passing this directly will fail. This is because creating a reference
to a bound method causes memory allocation. A solution is to create a reference to the method in the class
constructor and to pass that reference to schedule().

There is a finite queue to hold the scheduled functions and schedule() will raise a RuntimeError if the queue
is full.

1.8.10 Glossary

baremetal
A system without a (full-fledged) operating system, for example an MCU-based system. When running on a
baremetal system, MicroPython effectively functions like a small operating system, running user programs and
providing a command interpreter (REPL).

buffer protocol
Any Python object that can be automatically converted into bytes, such as bytes, bytearray, memoryview and
str objects, which all implement the “buffer protocol”.

board
Typically this refers to a printed circuit board (PCB) containing a microcontroller and supporting components.
MicroPython firmware is typically provided per-board, as the firmware contains both MCU-specific functionality
but also board-level functionality such as drivers or pin names.

1.8. Full Table of Contents 297

CircuitPython Documentation, Release 7.3.3

bytecode
A compact representation of a Python program that generated by compiling the Python source code. This is what
the VM actually executes. Bytecode is typically generated automatically at runtime and is invisible to the user.
Note that while CPython and MicroPython both use bytecode, the format is different. You can also pre-compile
source code offline using the cross-compiler.

callee-owned tuple
This is a MicroPython-specific construct where, for efficiency reasons, some built-in functions or methods may
re-use the same underlying tuple object to return data. This avoids having to allocate a new tuple for every call,
and reduces heap fragmentation. Programs should not hold references to callee-owned tuples and instead only
extract data from them (or make a copy).

CircuitPython
A variant of MicroPython developed by Adafruit Industries.

CPython
CPython is the reference implementation of the Python programming language, and the most well-known one.
It is, however, one of many implementations (including Jython, IronPython, PyPy, and MicroPython). While
MicroPython’s implementation differs substantially from CPython, it aims to maintain as much compatibility as
possible.

cross-compiler
Also known as mpy-cross. This tool runs on your PC and converts a .py file containing MicroPython code into
a .mpy file containing MicroPython bytecode. This means it loads faster (the board doesn’t have to compile the
code), and uses less space on flash (the bytecode is more space efficient).

driver
A MicroPython library that implements support for a particular component, such as a sensor or display.

FFI
Acronym for Foreign Function Interface. A mechanism used by the MicroPython Unix port to access operating
system functionality. This is not available on baremetal ports.

filesystem
Most MicroPython ports and boards provide a filesystem stored in flash that is available to user code via the
standard Python file APIs such as open(). Some boards also make this internal filesystem accessible to the host
via USB mass-storage.

frozen module
A Python module that has been cross compiled and bundled into the firmware image. This reduces RAM re-
quirements as the code is executed directly from flash.

Garbage Collector
A background process that runs in Python (and MicroPython) to reclaim unused memory in the heap.

GPIO
General-purpose input/output. The simplest means to control electrical signals (commonly referred to as “pins”)
on a microcontroller. GPIO typically allows pins to be either input or output, and to set or get their digital value
(logical “0” or “1”). MicroPython abstracts GPIO access using the machine.Pin and machine.Signal classes.

GPIO port
A group of GPIO pins, usually based on hardware properties of these pins (e.g. controllable by the same register).

heap
A region of RAM where MicroPython stores dynamic data. It is managed automatically by the Garbage Collec-
tor. Different MCUs and boards have vastly different amounts of RAM available for the heap, so this will affect
how complex your program can be.

interned string
An optimisation used by MicroPython to improve the efficiency of working with strings. An interned string

298 Chapter 1. CircuitPython

https://circuitpython.org

CircuitPython Documentation, Release 7.3.3

is referenced by its (unique) identity rather than its address and can therefore be quickly compared just by its
identifier. It also means that identical strings can be de-duplicated in memory. String interning is almost always
invisible to the user.

MCU
Microcontroller. Microcontrollers usually have much less resources than a desktop, laptop, or phone, but are
smaller, cheaper and require much less power. MicroPython is designed to be small and optimized enough to
run on an average modern microcontroller.

MicroPython port
MicroPython supports different boards, RTOSes, and OSes, and can be relatively easily adapted to new systems.
MicroPython with support for a particular system is called a “port” to that system. Different ports may have
widely different functionality. This documentation is intended to be a reference of the generic APIs available
across different ports (“MicroPython core”). Note that some ports may still omit some APIs described here (e.g.
due to resource constraints). Any such differences, and port-specific extensions beyond the MicroPython core
functionality, would be described in the separate port-specific documentation.

MicroPython Unix port
The unix port is one of the major MicroPython ports. It is intended to run on POSIX-compatible operating
systems, like Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the basis of Windows port. The Unix port
is very useful for quick development and testing of the MicroPython language and machine-independent features.
It can also function in a similar way to CPython’s python executable.

.mpy file
The output of the cross-compiler. A compiled form of a .py file that contains MicroPython bytecode instead of
Python source code.

native
Usually refers to “native code”, i.e. machine code for the target microcontroller (such as ARM Thumb, Xtensa,
x86/x64). The @native decorator can be applied to a MicroPython function to generate native code instead of
bytecode for that function, which will likely be faster but use more RAM.

port
Usually short for MicroPython port, but could also refer to GPIO port.

.py file
A file containing Python source code.

REPL
An acronym for “Read, Eval, Print, Loop”. This is the interactive Python prompt, useful for debugging or testing
short snippets of code. Most MicroPython boards make a REPL available over a UART, and this is typically
accessible on a host PC via USB.

stream
Also known as a “file-like object”. An Python object which provides sequential read-write access to the un-
derlying data. A stream object implements a corresponding interface, which consists of methods like read(),
write(), readinto(), seek(), flush(), close(), etc. A stream is an important concept in MicroPython;
many I/O objects implement the stream interface, and thus can be used consistently and interchangeably in dif-
ferent contexts. For more information on streams in MicroPython, see the io module.

UART
Acronym for “Universal Asynchronous Receiver/Transmitter”. This is a peripheral that sends data over a pair of
pins (TX & RX). Many boards include a way to make at least one of the UARTs available to a host PC as a serial
port over USB.

1.8. Full Table of Contents 299

CircuitPython Documentation, Release 7.3.3

1.8.11 CircuitPython

circuitpython.org | Get CircuitPython | Documentation | Contributing | Branding | Differences from Micropython |
Project Structure

CircuitPython is a beginner friendly, open source version of Python for tiny, inexpensive computers called microcon-
trollers. Microcontrollers are the brains of many electronics including a wide variety of development boards used to
build hobby projects and prototypes. CircuitPython in electronics is one of the best ways to learn to code because it
connects code to reality. Simply install CircuitPython on a supported USB board usually via drag and drop and then
edit a code.py file on the CIRCUITPY drive. The code will automatically reload. No software installs are needed
besides a text editor (we recommend Mu for beginners.)

Starting with CircuitPython 7.0.0, some boards may only be connectable over Bluetooth Low Energy (BLE). Those
boards provide serial and file access over BLE instead of USB using open protocols. (Some boards may use both USB
and BLE.) BLE access can be done from a variety of apps including code.circuitpython.org.

CircuitPython features unified Python core APIs and a growing list of 300+ device libraries and drivers that work with
it. These libraries also work on single board computers with regular Python via the Adafruit Blinka Library.

CircuitPython is based on MicroPython. See below for differences. Most, but not all, CircuitPython development is
sponsored by Adafruit and is available on their educational development boards. Please support both MicroPython and
Adafruit.

Get CircuitPython

Official binaries for all supported boards are available through circuitpython.org/downloads. The site includes stable,
unstable and continuous builds. Full release notes are available through GitHub releases as well.

Documentation

Guides and videos are available through the Adafruit Learning System under the CircuitPython category. An API ref-
erence is also available on Read the Docs. A collection of awesome resources can be found at Awesome CircuitPython.

Specifically useful documentation when starting out:

• Welcome to CircuitPython

• CircuitPython Essentials

• Example Code

300 Chapter 1. CircuitPython

https://github.com/adafruit/circuitpython/actions?query=branch%3Amain
http://circuitpython.readthedocs.io/
https://choosealicense.com/licenses/mit/
https://adafru.it/discord
https://hosted.weblate.org/engage/circuitpython/?utm_source=widget
https://circuitpython.org
https://codewith.mu/
https://code.circuitpython.org
https://github.com/adafruit/Adafruit_Blinka
https://micropython.org
https://adafruit.com
https://circuitpython.org/downloads
https://github.com/adafruit/circuitpython/releases
https://learn.adafruit.com/
https://learn.adafruit.com/category/circuitpython
http://circuitpython.readthedocs.io/en/latest/?
https://github.com/adafruit/awesome-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/circuitpython-essentials
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CircuitPython_Essentials

CircuitPython Documentation, Release 7.3.3

Code Search

GitHub doesn’t currently support code search on forks. Therefore, CircuitPython doesn’t have code search through
GitHub because it is a fork of MicroPython. Luckily, SourceGraph has free code search for public repos like Circuit-
Python. So, visit sourcegraph.com/github.com/adafruit/circuitpython to search the CircuitPython codebase online.

Contributing

See CONTRIBUTING.md for full guidelines but please be aware that by contributing to this project you are agreeing
to the Code of Conduct. Contributors who follow the Code of Conduct are welcome to submit pull requests and they
will be promptly reviewed by project admins. Please join the Discord too.

Branding

While we are happy to see CircuitPython forked and modified, we’d appreciate it if forked releases not use the name
“CircuitPython” or the Blinka logo. “CircuitPython” means something special to us and those who learn about it. As
a result, we’d like to make sure products referring to it meet a common set of requirements.

If you’d like to use the term “CircuitPython” and Blinka for your product here is what we ask:

• Your product is supported by the primary “adafruit/circuitpython” repo. This way we can update any custom
code as we update the CircuitPython internals.

• Your product is listed on circuitpython.org (source here). This is to ensure that a user of your product can always
download the latest version of CircuitPython from the standard place.

• Your product has a user accessible USB plug which appears as a CIRCUITPY drive when plugged in AND/OR
provides file and serial access over Bluetooth Low Energy. Boards that do not support USB should be clearly
marked as BLE-only CircuitPython.

If you choose not to meet these requirements, then we ask you call your version of CircuitPython something else
(for example, SuperDuperPython) and not use the Blinka logo. You can say it is “CircuitPython-compatible” if most
CircuitPython drivers will work with it.

Differences from MicroPython

CircuitPython:

• Supports native USB on most boards and BLE otherwise, allowing file editing without special tools.

• Floats (aka decimals) are enabled for all builds.

• Error messages are translated into 10+ languages.

• Concurrency within Python is not well supported. Interrupts and threading are disabled. async/await keywords
are available on some boards for cooperative multitasking. Some concurrency is achieved with native modules
for tasks that require it such as audio file playback.

1.8. Full Table of Contents 301

https://sourcegraph.com/github.com/adafruit/circuitpython
https://sourcegraph.com/github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/blob/main/CONTRIBUTING.md
https://github.com/adafruit/circuitpython/blob/main/CODE_OF_CONDUCT.md
https://github.com/adafruit/circuitpython/blob/main/CODE_OF_CONDUCT.md
https://adafru.it/discord
https://github.com/adafruit/circuitpython
https://circuitpython.org
https://github.com/adafruit/circuitpython-org/

CircuitPython Documentation, Release 7.3.3

Behavior

• The order that files are run and the state that is shared between them. CircuitPython’s goal is to clarify the role
of each file and make each file independent from each other.

– boot.py runs only once on start up before USB is initialized. This lays the ground work for configuring
USB at startup rather than it being fixed. Since serial is not available, output is written to boot_out.txt.

– code.py (or main.py) is run after every reload until it finishes or is interrupted. After it is done running,
the vm and hardware is reinitialized. This means you cannot read state from code.py in the REPL
anymore, as the REPL is a fresh vm. CircuitPython’s goal for this change includes reducing confusion
about pins and memory being used.

– After the main code is finished the REPL can be entered by pressing any key.

– Autoreload state will be maintained across reload.

• Adds a safe mode that does not run user code after a hard crash or brown out. This makes it possible to fix code
that causes nasty crashes by making it available through mass storage after the crash. A reset (the button) is
needed after it’s fixed to get back into normal mode.

• RGB status LED indicating CircuitPython state.

• Re-runs code.py or other main file after file system writes over USB mass storage. (Disable with supervisor.
disable_autoreload())

• Autoreload is disabled while the REPL is active.

• Main is one of these: code.txt, code.py, main.py, main.txt

• Boot is one of these: boot.py, boot.txt

API

• Unified hardware APIs. Documented on ReadTheDocs.

• API docs are Python stubs within the C files in shared-bindings.

• No machine API.

Modules

• No module aliasing. (uos and utime are not available as os and time respectively.) Instead os, time, and
random are CPython compatible.

• New storage module which manages file system mounts. (Functionality from uos in MicroPython.)

• Modules with a CPython counterpart, such as time, os and random, are strict subsets of their CPython version.
Therefore, code from CircuitPython is runnable on CPython but not necessarily the reverse.

• tick count is available as time.monotonic()

302 Chapter 1. CircuitPython

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html
https://docs.python.org/3.4/library/time.html?highlight=time#module-time
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html#time.monotonic

CircuitPython Documentation, Release 7.3.3

Project Structure

Here is an overview of the top-level source code directories.

Core

The core code of MicroPython is shared amongst ports including CircuitPython:

• docs High level user documentation in Sphinx reStructuredText format.

• drivers External device drivers written in Python.

• examples A few example Python scripts.

• extmod Shared C code used in multiple ports’ modules.

• lib Shared core C code including externally developed libraries such as FATFS.

• logo The CircuitPython logo.

• mpy-cross A cross compiler that converts Python files to byte code prior to being run in MicroPython. Useful
for reducing library size.

• py Core Python implementation, including compiler, runtime, and core library.

• shared-bindings Shared definition of Python modules, their docs and backing C APIs. Ports must implement
the C API to support the corresponding module.

• shared-module Shared implementation of Python modules that may be based on common-hal.

• tests Test framework and test scripts.

• tools Various tools, including the pyboard.py module.

Ports

Ports include the code unique to a microcontroller line.

Supported Support status
atmel-samd SAMD21 stable | SAMD51 stable
cxd56 stable
espressif ESP32-C3 beta | ESP32-S2 stable | ESP32-S3 beta
litex alpha
mimxrt10xx alpha
nrf stable
raspberrypi stable
stm F4 stable | others beta
unix alpha

• stable Highly unlikely to have bugs or missing functionality.

• beta Being actively improved but may be missing functionality and have bugs.

• alpha Will have bugs and missing functionality.

1.8. Full Table of Contents 303

https://github.com/micropython/micropython

CircuitPython Documentation, Release 7.3.3

Boards

• Each port has a boards directory containing boards which belong to a specific microcontroller line.

• A list of native modules supported by a particular board can be found here.

Back to Top

1.8.12 Contributing

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree
to abide by its terms. Participation covers any forum used to converse about CircuitPython including unofficial and
official spaces. Failure to do so will result in corrective actions such as time out or ban from the project.

Licensing

By contributing to this repository you are certifying that you have all necessary permissions to license the code under
an MIT License. You still retain the copyright but are granting many permissions under the MIT License.

If you have an employment contract with your employer please make sure that they don’t automatically own your work
product. Make sure to get any necessary approvals before contributing. Another term for this contribution off-hours is
moonlighting.

Ways to contribute

As CircuitPython grows, there are more and more ways to contribute. Here are some ideas:

• Build a project with CircuitPython and share how to do it online.

• Test the latest libraries and CircuitPython versions with your projects and file issues for any bugs you find.

• Contribute Python code to CircuitPython libraries that support new devices or features of an existing device.

• Contribute C code to CircuitPython which fixes an open issue or adds a new feature.

Getting started with C

CircuitPython developer Dan Halbert (@dhalbert) has written up build instructions using native build tools here.

For SAMD21 debugging workflow tips check out this learn guide from Scott (@tannewt).

Developer contacts

Scott Shawcroft (@tannewt) is the lead developer of CircuitPython and is sponsored by Adafruit Industries LLC. Scott
is usually available during US West Coast working hours. Dan Halbert (@dhalbert) and Kattni Rembor (@kattni) are
also sponsored by Adafruit Industries LLC and are usually available during US East Coast daytime hours including
some weekends.

They are all reachable on Discord, GitHub issues and the Adafruit support forum.

304 Chapter 1. CircuitPython

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://learn.adafruit.com/building-circuitpython
https://learn.adafruit.com/debugging-the-samd21-with-gdb
https://github.com/tannewt
https://adafruit.com
https://github.com/dhalbert
https://github.com/kattni
https://adafruit.com
https://adafru.it/discord
https://forums.adafruit.com/viewforum.php?f=60

CircuitPython Documentation, Release 7.3.3

Code guidelines

We aim to keep our code and commit style compatible with MicroPython upstream. Please review their code conven-
tions to do so. Familiarity with their design philosophy is also useful though not always applicable to CircuitPython.

Furthermore, CircuitPython has a design guide that covers a variety of different topics. Please read it as well.

1.8.13 Building CircuitPython

Welcome to CircuitPython!

This document is a quick-start guide only.

Detailed guides on how to build CircuitPython can be found in the Adafruit Learn system at
https://learn.adafruit.com/building-circuitpython/

Setup

Please ensure you set up your build environment appropriately, as per the guide. You will need:

• Linux: https://learn.adafruit.com/building-circuitpython/linux

• MacOS: https://learn.adafruit.com/building-circuitpython/macos

• Windows Subsystem for Linux (WSL): https://learn.adafruit.com/building-circuitpython/windows-subsystem-
for-linux

Submodules

This project has a bunch of git submodules. You will need to update them regularly.

In the root folder of the CircuitPython repository, execute the following:

make fetch-submodules

Required Python Packages

Failing to install these will prevent from properly building.

pip3 install -r requirements-dev.txt

mpy-cross

As part of the build process, mpy-cross is needed to compile .py files into .mpy files. To compile (or recompile)
mpy-cross:

make -C mpy-cross

1.8. Full Table of Contents 305

https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md
https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md
https://github.com/micropython/micropython/wiki/ContributorGuidelines
https://circuitpython.readthedocs.io/en/latest/docs/design_guide.html

CircuitPython Documentation, Release 7.3.3

1.8.14 Building

There a number of ports of CircuitPython! To build for your board, change to the appropriate ports directory and build.

Examples:

cd ports/atmel-samd
make BOARD=circuitplayground_express

cd ports/nrf
make BOARD=circuitplayground_bluefruit

If you aren’t sure what boards exist, have a peek in the boards subdirectory of your port. If you have a fast computer
with many cores, consider adding -j to your build flags, such as -j17 on a 6-core 12-thread machine.

1.8.15 Testing

If you are working on changes to the core language, you might find it useful to run the test suite. The test suite in the
top level tests directory. It needs the unix port to run.

cd ports/unix
make axtls
make micropython

Then you can run the test suite:

cd ../../tests
./run-tests

A successful run will say something like

676 tests performed (19129 individual testcases)
676 tests passed
30 tests skipped: buffered_writer builtin_help builtin_range_binop class_delattr_setattr␣
→˓cmd_parsetree extra_coverage framebuf1 framebuf16 framebuf2 framebuf4 framebuf8␣
→˓framebuf_subclass mpy_invalid namedtuple_asdict non_compliant resource_stream schedule␣
→˓sys_getsizeof urandom_extra ure_groups ure_span ure_sub ure_sub_unmatched vfs_basic␣
→˓vfs_fat_fileio1 vfs_fat_fileio2 vfs_fat_more vfs_fat_oldproto vfs_fat_ramdisk vfs_
→˓userfs

1.8.16 Debugging

The easiest way to debug CircuitPython on hardware is with a JLink device, JLinkGDBServer, and an appropriate
GDB. Instructions can be found at https://learn.adafruit.com/debugging-the-samd21-with-gdb

If using JLink, you’ll need both the JLinkGDBServer and arm-none-eabi-gdb running.

Example:

JLinkGDBServer -if SWD -device ATSAMD51J19
arm-none-eabi-gdb build-metro_m4_express/firmware.elf -iex "target extended-remote :2331"

If your port/build includes arm-none-eabi-gdb-py, consider using it instead, as it can be used for better register
debugging with https://github.com/bnahill/PyCortexMDebug

306 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

1.8.17 Code Quality Checks

We apply code quality checks using pre-commit. Install pre-commit once per system with

python3 -mpip install pre-commit

Activate it once per git clone with

pre-commit install

Pre-commit also requires some additional programs to be installed through your package manager:

• Standard Unix tools such as make, find, etc

• The gettext package, any modern version

• uncrustify version 0.71 (0.72 is also tested)

Each time you create a git commit, the pre-commit quality checks will be run. You can also run them e.g., with
pre-commit run foo.c or pre-commit run --all to run on all files whether modified or not.

Some pre-commit quality checks require your active attention to resolve, others (such as the formatting checks of
uncrustify) are made automatically and must simply be incorporated into your code changes by committing them.

1.8.18 Adafruit Community Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and leaders pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level or type of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

We are committed to providing a friendly, safe and welcoming environment for all.

Examples of behavior that contributes to creating a positive environment include:

• Be kind and courteous to others

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Collaborating with other community members

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and sexual attention or advances

• The use of inappropriate images, including in a community member’s avatar

• The use of inappropriate language, including in a community member’s nickname

• Any spamming, flaming, baiting or other attention-stealing behavior

1.8. Full Table of Contents 307

CircuitPython Documentation, Release 7.3.3

• Excessive or unwelcome helping; answering outside the scope of the question asked

• Trolling, insulting/derogatory comments, and personal or political attacks

• Promoting or spreading disinformation, lies, or conspiracy theories against a person, group, organisation, project,
or community

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate

The goal of the standards and moderation guidelines outlined here is to build and maintain a respectful community.
We ask that you don’t just aim to be “technically unimpeachable”, but rather try to be your best self.

We value many things beyond technical expertise, including collaboration and supporting others within our community.
Providing a positive experience for other community members can have a much more significant impact than simply
providing the correct answer.

Our Responsibilities

Project leaders are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate
and fair corrective action in response to any instances of unacceptable behavior.

Project leaders have the right and responsibility to remove, edit, or reject messages, comments, commits, code, is-
sues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
community member for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Moderation

Instances of behaviors that violate the Adafruit Community Code of Conduct may be reported by any member of the
community. Community members are encouraged to report these situations, including situations they witness involving
other community members.

You may report in the following ways:

In any situation, you may send an email to support@adafruit.com.

On the Adafruit Discord, you may send an open message from any channel to all Community Moderators by tagging
@community moderators. You may also send an open message from any channel, or a direct message to @kattni#1507,
@tannewt#4653, @danh#1614, @cater#2442, @sommersoft#0222, @Mr. Certainly#0472 or @Andon#8175.

Email and direct message reports will be kept confidential.

In situations on Discord where the issue is particularly egregious, possibly illegal, requires immediate action, or violates
the Discord terms of service, you should also report the message directly to Discord.

These are the steps for upholding our community’s standards of conduct.

1. Any member of the community may report any situation that violates the Adafruit Community Code of Conduct.
All reports will be reviewed and investigated.

2. If the behavior is an egregious violation, the community member who committed the violation may be banned
immediately, without warning.

3. Otherwise, moderators will first respond to such behavior with a warning.

4. Moderators follow a soft “three strikes” policy - the community member may be given another chance, if they
are receptive to the warning and change their behavior.

308 Chapter 1. CircuitPython

mailto:support@adafruit.com

CircuitPython Documentation, Release 7.3.3

5. If the community member is unreceptive or unreasonable when warned by a moderator, or the warning goes
unheeded, they may be banned for a first or second offense. Repeated offenses will result in the community
member being banned.

Scope

This Code of Conduct and the enforcement policies listed above apply to all Adafruit Community venues. This includes
but is not limited to any community spaces (both public and private), the entire Adafruit Discord server, and Adafruit
GitHub repositories. Examples of Adafruit Community spaces include but are not limited to meet-ups, audio chats on
the Adafruit Discord, or interaction at a conference.

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. As a community member, you are representing our community, and are expected to behave
accordingly.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html, and the Rust Code of Conduct.

For other projects adopting the Adafruit Community Code of Conduct, please contact the maintainers of those projects
for enforcement. If you wish to use this code of conduct for your own project, consider explicitly mentioning your
moderation policy or making a copy with your own moderation policy so as to avoid confusion.

1.8.19 MicroPython & CircuitPython license information

The MIT License (MIT)

Copyright (c) 2013-2017 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.8. Full Table of Contents 309

https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.rust-lang.org/en-US/conduct.html

CircuitPython Documentation, Release 7.3.3

1.8.20 WebUSB Serial Support

To date, this has only been tested on one port (espressif), on one board (espressif_kaluga_1).

What it does

If you have ever used CircuitPython on a platform with a graphical LCD display, you have probably already seen
multiple “consoles” in use (although the LCD console is “output only”).

New compile-time option CIRCUITPY_USB_VENDOR enables an additional “console” that can be used in parallel
with the original (CDC) serial console.

Web pages that support the WebUSB standard can connect to the “vendor” interface and activate this WebUSB serial
console at any time.

You can type into either console, and CircuitPython output is sent to all active consoles.

One example of a web page you can use to test drive this feature can be found at:

https://adafruit.github.io/Adafruit_TinyUSB_Arduino/examples/webusb-serial/index.html

How to enable

Update your platform’s mpconfigboard.mk file to enable and disable specific types of USB interfaces.

CIRCUITPY_USB_HID = xxx CIRCUITPY_USB_MIDI = xxx CIRCUITPY_USB_VENDOR = xxx

On at least some of the hardware platforms, the maximum number of USB endpoints is fixed. For example, on the
ESP32S2, you must pick only one of the above 3 interfaces to be enabled.

Original espressif_kaluga_1 mpconfigboard.mk settings:

CIRCUITPY_USB_HID = 1 CIRCUITPY_USB_MIDI = 0 CIRCUITPY_USB_VENDOR = 0

Settings to enable WebUSB instead:

CIRCUITPY_USB_HID = 0 CIRCUITPY_USB_MIDI = 0 CIRCUITPY_USB_VENDOR = 1

Notice that to enable VENDOR on ESP32-S2, we had to give up HID. There may be platforms that can have both, or
even all three.

Implementation Notes

CircuitPython uses the tinyusb library.

The tinyusb library already has support for WebUSB serial. The tinyusb examples already include a “WebUSB serial”
example.

Sidenote - The use of the term "vendor" instead of "WebUSB" was done to match tinyusb.

Basically, this feature was ported into CircuitPython by pulling code snippets out of the tinyusb example, and putting
them where they best belonged in the CircuitPython codebase.

310 Chapter 1. CircuitPython

CircuitPython Documentation, Release 7.3.3

TODO: This needs to be reworked for dynamic USB descriptors.

1.8. Full Table of Contents 311

CircuitPython Documentation, Release 7.3.3

312 Chapter 1. CircuitPython

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

313

CircuitPython Documentation, Release 7.3.3

314 Chapter 2. Indices and tables

PYTHON MODULE INDEX

_
_bleio, 59
_eve, 70
_pew, 79
_stage, 79

a
adafruit_bus_device, 81
adafruit_bus_device.i2c_device, 81
adafruit_bus_device.spi_device, 82
adafruit_pixelbuf, 83
aesio, 84
alarm, 85
alarm.pin, 85
alarm.time, 86
alarm.touch, 86
analogio, 88
array, 266
atexit, 90
audiobusio, 90
audiocore, 93
audioio, 95
audiomixer, 97
audiomp3, 99
audiopwmio, 100

b
binascii, 267
bitbangio, 102
bitmaptools, 106
bitops, 109
board, 110
btree, 290
busio, 110

c
camera, 117
canio, 118
collections, 267
countio, 122

d
digitalio, 124
displayio, 126
dualbank, 140

e
errno, 269
espidf, 140

f
floppyio, 141
fontio, 142
framebuf, 293
framebufferio, 143
frequencyio, 144

g
gamepadshift, 146
gc, 269
getpass, 146
gifio, 146
gnss, 147

h
hashlib, 271
heapq, 266

i
i2cperipheral, 149
imagecapture, 151
io, 272
ipaddress, 152
is31fl3741, 153

j
json, 273

k
keypad, 154

m
math, 159

315

CircuitPython Documentation, Release 7.3.3

mdns, 161
memorymonitor, 163
microcontroller, 164
micropython, 295
msgpack, 167
multiterminal, 168

n
neopixel_write, 169
nvm, 169

o
onewireio, 170
os, 171

p
paralleldisplay, 173
ps2io, 173
pulseio, 175
pwmio, 178

q
qrio, 180

r
rainbowio, 181
random, 181
re, 274
rgbmatrix, 182
rotaryio, 183
rp2pio, 184
rtc, 189

s
samd, 190
sdcardio, 190
sdioio, 191
select, 288
sharpdisplay, 193
socketpool, 193
ssl, 195
storage, 197
struct, 199
supervisor, 199
synthio, 202
sys, 276

t
terminalio, 203
time, 204
touchio, 205
traceback, 206

u
uasyncio, 278
uctypes, 283
uheap, 208
ulab, 208
ulab.numpy, 208
ulab.numpy.carray, 208
ulab.numpy.fft, 208
ulab.numpy.linalg, 209
ulab.scipy, 214
ulab.scipy.linalg, 214
ulab.scipy.optimize, 215
ulab.scipy.signal, 216
ulab.user, 216
usb, 216
usb.core, 216
usb_cdc, 218
usb_hid, 220
usb_host, 223
usb_midi, 223
ustack, 224

v
vectorio, 225

w
watchdog, 227
wifi, 228

z
zlib, 232

316 Python Module Index

INDEX

Symbols
.mpy file, 299
.py file, 299
_ArrayLike (in module ulab.numpy), 211
_DType (in module ulab.numpy), 211
_DisplayBus (in module displayio), 129
_EVE (class in _eve), 70
_T (in module random), 181
_Uname (class in os), 171
__bool__() (alarm.SleepMemory method), 88
__bool__() (displayio.Group method), 135
__bool__() (displayio.Palette method), 137
__bool__() (keypad.EventQueue method), 155
__bool__() (nvm.ByteArray method), 170
__bool__() (ps2io.Ps2 method), 175
__bool__() (pulseio.PulseIn method), 176
__contains__() (btree.btree method), 292
__del__() (mdns.RemoteService method), 162
__delitem__() (btree.btree method), 292
__delitem__() (displayio.Group method), 136
__enter__() (adafruit_bus_device.i2c_device.I2CDevice

method), 81
__enter__() (adafruit_bus_device.spi_device.SPIDevice

method), 83
__enter__() (analogio.AnalogIn method), 89
__enter__() (analogio.AnalogOut method), 89
__enter__() (audiobusio.I2SOut method), 91
__enter__() (audiobusio.PDMIn method), 92
__enter__() (audiocore.RawSample method), 93
__enter__() (audiocore.WaveFile method), 94
__enter__() (audioio.AudioOut method), 96
__enter__() (audiomixer.Mixer method), 98
__enter__() (audiomp3.MP3Decoder method), 100
__enter__() (audiopwmio.PWMAudioOut method),

101
__enter__() (bitbangio.I2C method), 103
__enter__() (bitbangio.SPI method), 104
__enter__() (busio.I2C method), 111
__enter__() (busio.SPI method), 113
__enter__() (busio.UART method), 116
__enter__() (canio.CAN method), 120
__enter__() (canio.Listener method), 121

__enter__() (countio.Counter method), 123
__enter__() (digitalio.DigitalInOut method), 125
__enter__() (frequencyio.FrequencyIn method), 145
__enter__() (gifio.GifWriter method), 147
__enter__() (i2cperipheral.I2CPeripheral method),

150
__enter__() (i2cperipheral.I2CPeripheralRequest

method), 151
__enter__() (imagecapture.ParallelImageCapture

method), 152
__enter__() (keypad.KeyMatrix method), 156
__enter__() (keypad.Keys method), 157
__enter__() (keypad.ShiftRegisterKeys method), 158
__enter__() (memorymonitor.AllocationAlarm

method), 163
__enter__() (memorymonitor.AllocationSize method),

164
__enter__() (onewireio.OneWire method), 170
__enter__() (ps2io.Ps2 method), 174
__enter__() (pulseio.PulseIn method), 176
__enter__() (pulseio.PulseOut method), 177
__enter__() (pwmio.PWMOut method), 180
__enter__() (rotaryio.IncrementalEncoder method),

183
__enter__() (rp2pio.StateMachine method), 186
__enter__() (sdioio.SDCard method), 193
__enter__() (socketpool.Socket method), 193
__enter__() (ssl.SSLSocket method), 196
__enter__() (synthio.MidiTrack method), 203
__enter__() (touchio.TouchIn method), 206
__enter__() (usb_host.Port method), 223
__eq__() (_bleio.Address method), 62
__eq__() (_bleio.UUID method), 70
__eq__() (ipaddress.IPv4Address method), 152
__eq__() (keypad.Event method), 155
__exit__() (adafruit_bus_device.i2c_device.I2CDevice

method), 81
__exit__() (adafruit_bus_device.spi_device.SPIDevice

method), 83
__exit__() (analogio.AnalogIn method), 89
__exit__() (analogio.AnalogOut method), 89
__exit__() (audiobusio.I2SOut method), 91

317

CircuitPython Documentation, Release 7.3.3

__exit__() (audiobusio.PDMIn method), 92
__exit__() (audiocore.RawSample method), 94
__exit__() (audiocore.WaveFile method), 95
__exit__() (audioio.AudioOut method), 96
__exit__() (audiomixer.Mixer method), 98
__exit__() (audiomp3.MP3Decoder method), 100
__exit__() (audiopwmio.PWMAudioOut method), 101
__exit__() (bitbangio.I2C method), 103
__exit__() (bitbangio.SPI method), 104
__exit__() (busio.I2C method), 111
__exit__() (busio.SPI method), 113
__exit__() (busio.UART method), 116
__exit__() (canio.CAN method), 120
__exit__() (canio.Listener method), 121
__exit__() (countio.Counter method), 123
__exit__() (digitalio.DigitalInOut method), 125
__exit__() (frequencyio.FrequencyIn method), 145
__exit__() (gifio.GifWriter method), 147
__exit__() (i2cperipheral.I2CPeripheral method), 150
__exit__() (i2cperipheral.I2CPeripheralRequest

method), 151
__exit__() (imagecapture.ParallelImageCapture

method), 152
__exit__() (keypad.KeyMatrix method), 156
__exit__() (keypad.Keys method), 157
__exit__() (keypad.ShiftRegisterKeys method), 158
__exit__() (memorymonitor.AllocationAlarm method),

163
__exit__() (memorymonitor.AllocationSize method),

164
__exit__() (onewireio.OneWire method), 170
__exit__() (ps2io.Ps2 method), 174
__exit__() (pulseio.PulseIn method), 176
__exit__() (pulseio.PulseOut method), 177
__exit__() (pwmio.PWMOut method), 180
__exit__() (rotaryio.IncrementalEncoder method), 183
__exit__() (rp2pio.StateMachine method), 186
__exit__() (sdioio.SDCard method), 193
__exit__() (socketpool.Socket method), 193
__exit__() (ssl.SSLSocket method), 196
__exit__() (synthio.MidiTrack method), 203
__exit__() (touchio.TouchIn method), 206
__exit__() (usb_host.Port method), 223
__get__() (frequencyio.FrequencyIn method), 145
__getitem__() (adafruit_pixelbuf.PixelBuf method), 84
__getitem__() (alarm.SleepMemory method), 88
__getitem__() (btree.btree method), 292
__getitem__() (displayio.Bitmap method), 127
__getitem__() (displayio.Group method), 135
__getitem__() (displayio.Palette method), 137
__getitem__() (displayio.TileGrid method), 139
__getitem__() (memorymonitor.AllocationSize

method), 164
__getitem__() (nvm.ByteArray method), 170

__getitem__() (pulseio.PulseIn method), 177
__hash__() (_bleio.Address method), 62
__hash__() (ipaddress.IPv4Address method), 152
__hash__() (keypad.Event method), 155
__hash__() (microcontroller.Pin method), 165
__hash__() (socketpool.Socket method), 193
__hash__() (ssl.SSLSocket method), 196
__init__() (in module wifi), 229
__iter__() (_bleio.ScanResults method), 69
__iter__() (btree.btree method), 292
__iter__() (canio.Listener method), 121
__iter__() (wifi.ScannedNetworks method), 232
__len__() (alarm.SleepMemory method), 88
__len__() (displayio.Group method), 135
__len__() (displayio.Palette method), 137
__len__() (keypad.EventQueue method), 156
__len__() (memorymonitor.AllocationSize method),

164
__len__() (nvm.ByteArray method), 170
__len__() (ps2io.Ps2 method), 175
__len__() (pulseio.PulseIn method), 176
__next__() (_bleio.ScanResults method), 69
__next__() (canio.Listener method), 121
__next__() (wifi.ScannedNetworks method), 232
__setitem__() (adafruit_pixelbuf.PixelBuf method), 84
__setitem__() (alarm.SleepMemory method), 88
__setitem__() (btree.btree method), 292
__setitem__() (displayio.Bitmap method), 127
__setitem__() (displayio.Group method), 135
__setitem__() (displayio.Palette method), 137
__setitem__() (displayio.TileGrid method), 140
__setitem__() (nvm.ByteArray method), 170
_bleio

module, 59
_eve

module, 70
_pew

module, 79
_stage

module, 79

A
a2b_base64() (in module binascii), 267
abs()

built-in function, 262
abs() (in module ulab.numpy.carray), 208
accept() (socketpool.Socket method), 193
accept() (ssl.SSLSocket method), 196
ack() (i2cperipheral.I2CPeripheralRequest method),

151
acos() (in module math), 159
acos() (in module ulab.numpy), 212
acosh() (in module math), 161
acosh() (in module ulab.numpy), 213

318 Index

CircuitPython Documentation, Release 7.3.3

acquire() (uasyncio.Lock method), 280
adafruit_bus_device

module, 81
adafruit_bus_device.i2c_device

module, 81
adafruit_bus_device.spi_device

module, 82
adafruit_pixelbuf

module, 83
Adapter (class in _bleio), 59
adapter (in module _bleio), 59
add_frame() (gifio.GifWriter method), 147
add_to_characteristic() (_bleio.Descriptor class

method), 67
add_to_service() (_bleio.Characteristic method), 63
address (_bleio.Adapter attribute), 60
address (_bleio.ScanEntry attribute), 68
Address (class in _bleio), 61
address (i2cperipheral.I2CPeripheralRequest attribute),

150
address_bytes (_bleio.Address attribute), 62
addressof() (in module uctypes), 286
advertise_service() (mdns.Server method), 162
advertisement_bytes (_bleio.ScanEntry attribute), 68
advertising (_bleio.Adapter attribute), 60
AES (class in aesio), 84
aesio

module, 84
AF_INET (socketpool.SocketPool attribute), 195
AF_INET6 (socketpool.SocketPool attribute), 195
alarm

module, 85
alarm.pin

module, 85
alarm.time

module, 86
alarm.touch

module, 86
all()

built-in function, 262
AllocationAlarm (class in memorymonitor), 163
AllocationError, 163
AllocationSize (class in memorymonitor), 163
alphablend() (in module bitmaptools), 107
AlphaFunc() (_eve._EVE method), 70
altitude (gnss.GNSS attribute), 148
AnalogIn (class in analogio), 88
analogio

module, 88
AnalogOut (class in analogio), 89
any()

built-in function, 262
ap_info (wifi.Radio attribute), 231
append() (array.array method), 266

append() (collections.deque method), 268
append() (displayio.Group method), 135
arange() (in module ulab.numpy), 210
arctan2() (in module ulab.numpy), 213
argmax() (in module ulab.numpy), 211
argmin() (in module ulab.numpy), 211
argsort() (in module ulab.numpy), 211
argv (in module sys), 277
ArithmeticError, 264
around() (in module ulab.numpy), 213
array

module, 266
array (class in array), 266
ARRAY (in module uctypes), 286
array() (in module ulab.numpy), 212
arrayblit() (in module bitmaptools), 108
asin() (in module math), 159
asin() (in module ulab.numpy), 213
asinh() (in module math), 161
asinh() (in module ulab.numpy), 213
AssertionError, 264
atan() (in module math), 159
atan() (in module ulab.numpy), 213
atan2() (in module math), 159
atanh() (in module math), 161
atanh() (in module ulab.numpy), 213
atexit

module, 90
Atkinson (bitmaptools.DitherAlgorithm attribute), 109
attach_kernel_driver() (usb.core.Device method),

218
Attribute (class in _bleio), 62
AttributeError, 264
audiobusio

module, 90
audiocore

module, 93
audioio

module, 95
audiomixer

module, 97
audiomp3

module, 99
AudioOut (class in audioio), 95
audiopwmio

module, 100
AuthMode (class in wifi), 228
authmode (wifi.Network attribute), 230
auto_brightness (displayio.Display attribute), 131
auto_brightness (framebufferio.FramebufferDisplay

attribute), 143
auto_refresh (displayio.Display attribute), 131
auto_refresh (framebufferio.FramebufferDisplay at-

tribute), 143

Index 319

CircuitPython Documentation, Release 7.3.3

AUTO_RELOAD (supervisor.RunReason attribute), 201
auto_restart (canio.CAN attribute), 119
auto_write (adafruit_pixelbuf.PixelBuf attribute), 84

B
b2a_base64() (in module binascii), 267
background_write() (rp2pio.StateMachine method),

187
baremetal, 297
BaseException, 264
baudrate (busio.UART attribute), 116
baudrate (canio.CAN attribute), 119
Begin() (_eve._EVE method), 71
BIG_ENDIAN (in module uctypes), 286
bin()

built-in function, 262
binascii

module, 267
bind() (socketpool.Socket method), 193
bind() (ssl.SSLSocket method), 196
bisect() (in module ulab.scipy.optimize), 215
bit_transpose() (in module bitops), 109
bitbangio

module, 102
Bitmap (class in displayio), 127
bitmap (displayio.TileGrid attribute), 139
bitmap (fontio.BuiltinFont attribute), 142
BitmapExtFormat() (_eve._EVE method), 71
BitmapHandle() (_eve._EVE method), 71
BitmapLayout() (_eve._EVE method), 71
BitmapLayoutH() (_eve._EVE method), 71
BitmapSize() (_eve._EVE method), 71
BitmapSizeH() (_eve._EVE method), 71
BitmapSource() (_eve._EVE method), 72
BitmapSwizzle() (_eve._EVE method), 72
bitmaptools

module, 106
BitmapTransformA() (_eve._EVE method), 72
BitmapTransformB() (_eve._EVE method), 72
BitmapTransformC() (_eve._EVE method), 72
BitmapTransformD() (_eve._EVE method), 73
BitmapTransformE() (_eve._EVE method), 73
BitmapTransformF() (_eve._EVE method), 73
bitops

module, 109
bits_per_sample (audiocore.WaveFile attribute), 94
bits_per_sample (audiomp3.MP3Decoder attribute),

100
BlendFunc() (_eve._EVE method), 73
blit() (displayio.Bitmap method), 127
blit() (framebuf.FrameBuffer method), 294
BluetoothError, 59
board, 297

module, 110

board_id (in module board), 110
bool (built-in class), 262
bool (in module ulab.numpy), 211
BOOTLOADER (microcontroller.RunMode attribute), 167
boundary_fill() (in module bitmaptools), 107
bpp (adafruit_pixelbuf.PixelBuf attribute), 83
brightness (adafruit_pixelbuf.PixelBuf attribute), 83
brightness (displayio.Display attribute), 131
brightness (framebufferio.FramebufferDisplay at-

tribute), 143
brightness (is31fl3741.IS31FL3741_FrameBuffer at-

tribute), 153
brightness (rgbmatrix.RGBMatrix attribute), 182
BROADCAST (_bleio.Characteristic attribute), 63
BrokenPipeError, 264
BROWNOUT (microcontroller.ResetReason attribute), 166
bssid (wifi.Network attribute), 229
btree

module, 290
buffer protocol, 297
built-in function

abs(), 262
all(), 262
any(), 262
bin(), 262
callable(), 262
chr(), 262
classmethod(), 262
compile(), 262
delattr(), 262
dir(), 262
divmod(), 262
enumerate(), 262
eval(), 262
exec(), 262
filter(), 262
getattr(), 263
globals(), 263
hasattr(), 263
hash(), 263
help(), 233
hex(), 263
id(), 263
input(), 263
isinstance(), 263
issubclass(), 263
iter(), 263
len(), 263
locals(), 263
map(), 263
max(), 263
min(), 263
next(), 263
oct(), 263

320 Index

CircuitPython Documentation, Release 7.3.3

open(), 263
ord(), 263
pow(), 263
print(), 263
property(), 264
range(), 264
repr(), 264
reversed(), 264
round(), 264
setattr(), 264
sorted(), 264
staticmethod(), 264
sum(), 264
super(), 264
type(), 264
zip(), 264

BuiltinFont (class in fontio), 142
bus (displayio.Display attribute), 131
bus (displayio.EPaperDisplay attribute), 134
BUS_OFF (canio.BusState attribute), 119
busio

module, 110
BusState (class in canio), 118
busy (displayio.EPaperDisplay attribute), 133
bytearray (built-in class), 262
ByteArray (class in nvm), 169
bytearray_at() (in module uctypes), 286
bytecode, 298
byteorder (adafruit_pixelbuf.PixelBuf attribute), 84
byteorder (in module sys), 277
bytes (built-in class), 262
bytes_at() (in module uctypes), 286
bytes_per_block (memorymonitor.AllocationSize at-

tribute), 164
BytesIO (class in io), 273

C
calcsize() (in module struct), 199
calibration (rtc.RTC attribute), 189
calibration (samd.Clock attribute), 190
Call() (_eve._EVE method), 73
call_exception_handler() (uasyncio.Loop method),

282
callable()

built-in function, 262
callee-owned tuple, 298
camera

module, 117
Camera (class in camera), 117
CAN (class in canio), 119
cancel() (uasyncio.Task method), 280
canio

module, 118

capture() (imagecapture.ParallelImageCapture
method), 151

capture_period (frequencyio.FrequencyIn attribute),
145

cc() (_eve._EVE method), 70
ceil() (in module math), 159
ceil() (in module ulab.numpy), 213
Cell() (_eve._EVE method), 73
CH (wifi.Packet attribute), 230
channel (in module wifi), 229
channel (wifi.Network attribute), 230
channel_count (audiocore.WaveFile attribute), 94
channel_count (audiomp3.MP3Decoder attribute), 100
characteristic (_bleio.Descriptor attribute), 67
Characteristic (class in _bleio), 63
CharacteristicBuffer (class in _bleio), 64
characteristics (_bleio.Service attribute), 69
chdir() (in module os), 171
check_hostname (ssl.SSLContext attribute), 195
cho_solve() (in module ulab.scipy.linalg), 215
choice() (in module random), 181
cholesky() (in module ulab.numpy.linalg), 209
chr()

built-in function, 262
Circle (class in vectorio), 225
CircuitPython, 298
classmethod()

built-in function, 262
Clear() (_eve._EVE method), 74
clear() (frequencyio.FrequencyIn method), 145
clear() (keypad.EventQueue method), 155
clear() (pulseio.PulseIn method), 176
clear() (uasyncio.Event method), 280
clear_errors() (ps2io.Ps2 method), 174
clear_rxfifo() (rp2pio.StateMachine method), 188
clear_secondary_terminal() (in module multitermi-

nal), 169
clear_txstall() (rp2pio.StateMachine method), 188
ClearColorA() (_eve._EVE method), 74
ClearColorRGB() (_eve._EVE method), 74
ClearStencil() (_eve._EVE method), 74
ClearTag() (_eve._EVE method), 74
Clock (class in samd), 190
close() (btree.btree method), 292
close() (socketpool.Socket method), 194
close() (ssl.SSLSocket method), 196
close() (uasyncio.Loop method), 282
close() (uasyncio.Server method), 282
close() (uasyncio.Stream method), 281
cmd() (_eve._EVE method), 78
cmd0() (_eve._EVE method), 78
code (msgpack.ExtType attribute), 168
collect() (in module gc), 270
collections

Index 321

CircuitPython Documentation, Release 7.3.3

module, 267
color_index (vectorio.Circle attribute), 225
color_index (vectorio.Polygon attribute), 226
color_index (vectorio.Rectangle attribute), 226
ColorA() (_eve._EVE method), 75
ColorConverter (class in displayio), 128
ColorMask() (_eve._EVE method), 75
ColorRGB() (_eve._EVE method), 75
Colorspace (class in displayio), 126
colorwheel() (in module rainbowio), 181
compile()

built-in function, 262
compile() (in module re), 275
complex (built-in class), 262
concatenate() (in module ulab.numpy), 210
configure() (bitbangio.SPI method), 104
configure() (busio.SPI method), 113
configure() (sdioio.SDCard method), 192
conjugate() (in module ulab.numpy.carray), 208
connect() (_bleio.Adapter method), 61
connect() (socketpool.Socket method), 194
connect() (ssl.SSLSocket method), 196
connect() (wifi.Radio method), 231
connectable (_bleio.ScanEntry attribute), 68
connected (_bleio.Adapter attribute), 60
connected (_bleio.Connection attribute), 66
connected (usb_cdc.Serial attribute), 219
Connection (class in _bleio), 65
connection_interval (_bleio.Connection attribute),

66
ConnectionError, 264
connections (_bleio.Adapter attribute), 60
console (in module usb_cdc), 218
const() (in module micropython), 295
CONSUMER_CONTROL (usb_hid.Device attribute), 222
continuous_capture_get_frame() (imagecap-

ture.ParallelImageCapture method), 152
continuous_capture_start() (imagecap-

ture.ParallelImageCapture method), 152
continuous_capture_stop() (imagecap-

ture.ParallelImageCapture method), 152
convert() (displayio.ColorConverter method), 128
copysign() (in module math), 159
cos() (in module math), 159
cos() (in module ulab.numpy), 213
cosh() (in module math), 160
cosh() (in module ulab.numpy), 213
count (countio.Counter attribute), 123
count() (sdcardio.SDCard method), 191
count() (sdioio.SDCard method), 192
Counter (class in countio), 123
countio

module, 122
country (wifi.Network attribute), 230

cpu (in module microcontroller), 164
cpus (in module microcontroller), 164
CPython, 298
crc32() (in module binascii), 267
create_default_context() (in module ssl), 195
create_task() (in module uasyncio), 279
create_task() (uasyncio.Loop method), 282
cross() (in module ulab.numpy), 211
cross-compiler, 298
ctrl_transfer() (usb.core.Device method), 217
current_task() (in module uasyncio), 279

D
data (canio.Message attribute), 122
data (in module usb_cdc), 218
data (msgpack.ExtType attribute), 168
data_type (qrio.QRInfo attribute), 181
datetime (rtc.RTC attribute), 189
DEBUG (in module re), 275
decode() (qrio.QRDecoder method), 180
decompress() (in module zlib), 290
decrypt_into() (aesio.AES method), 85
DEEP_SLEEP_ALARM (microcontroller.ResetReason

attribute), 166
default_exception_handler() (uasyncio.Loop

method), 282
degrees() (in module math), 159
degrees() (in module ulab.numpy), 213
deinit() (_bleio.CharacteristicBuffer method), 65
deinit() (_bleio.PacketBuffer method), 68
deinit() (analogio.AnalogIn method), 89
deinit() (analogio.AnalogOut method), 89
deinit() (audiobusio.I2SOut method), 91
deinit() (audiobusio.PDMIn method), 92
deinit() (audiocore.RawSample method), 93
deinit() (audiocore.WaveFile method), 94
deinit() (audioio.AudioOut method), 96
deinit() (audiomixer.Mixer method), 98
deinit() (audiomp3.MP3Decoder method), 100
deinit() (audiopwmio.PWMAudioOut method), 101
deinit() (bitbangio.I2C method), 103
deinit() (bitbangio.SPI method), 104
deinit() (busio.I2C method), 111
deinit() (busio.SPI method), 113
deinit() (busio.UART method), 116
deinit() (camera.Camera method), 118
deinit() (canio.CAN method), 120
deinit() (canio.Listener method), 121
deinit() (countio.Counter method), 123
deinit() (digitalio.DigitalInOut method), 125
deinit() (frequencyio.FrequencyIn method), 145
deinit() (gamepadshift.GamePadShift method), 146
deinit() (gifio.GifWriter method), 147
deinit() (gnss.GNSS method), 148

322 Index

CircuitPython Documentation, Release 7.3.3

deinit() (i2cperipheral.I2CPeripheral method), 150
deinit() (imagecapture.ParallelImageCapture method),

152
deinit() (in module wifi), 229
deinit() (is31fl3741.IS31FL3741 method), 153
deinit() (is31fl3741.IS31FL3741_FrameBuffer

method), 153
deinit() (keypad.KeyMatrix method), 156
deinit() (keypad.Keys method), 157
deinit() (keypad.ShiftRegisterKeys method), 158
deinit() (mdns.Server method), 162
deinit() (onewireio.OneWire method), 170
deinit() (ps2io.Ps2 method), 174
deinit() (pulseio.PulseIn method), 176
deinit() (pulseio.PulseOut method), 177
deinit() (pwmio.PWMOut method), 180
deinit() (rgbmatrix.RGBMatrix method), 182
deinit() (rotaryio.IncrementalEncoder method), 183
deinit() (rp2pio.StateMachine method), 186
deinit() (sdcardio.SDCard method), 191
deinit() (sdioio.SDCard method), 193
deinit() (synthio.MidiTrack method), 203
deinit() (touchio.TouchIn method), 206
deinit() (usb_host.Port method), 223
deinit() (watchdog.WatchDogTimer method), 228
delattr()

built-in function, 262
delay_us() (in module microcontroller), 164
deque() (in module collections), 268
DESC (in module btree), 293
Descriptor (class in _bleio), 66
descriptors (_bleio.Characteristic attribute), 63
det() (in module ulab.numpy.linalg), 209
detach_kernel_driver() (usb.core.Device method),

218
Device (class in usb.core), 216
Device (class in usb_hid), 221
devices (in module usb_hid), 220
diag() (in module ulab.numpy), 210
dict (built-in class), 262
diff() (in module ulab.numpy), 211
digest() (hashlib.hash method), 271
DigitalInOut (class in digitalio), 124
digitalio

module, 124
dir()

built-in function, 262
Direction (class in digitalio), 126
direction (digitalio.DigitalInOut attribute), 124
dirty() (displayio.Bitmap method), 128
disable() (in module gc), 270
disable() (in module usb_cdc), 218
disable() (in module usb_hid), 220
disable() (in module usb_midi), 223

disable_autoreload() (in module supervisor), 199
disable_ble_workflow() (in module supervisor), 201
disable_interrupts() (in module microcontroller),

164
disable_usb_drive() (in module storage), 198
disconnect() (_bleio.Connection method), 66
discover_remote_services() (_bleio.Connection

method), 66
Display (class in displayio), 129
Display() (_eve._EVE method), 75
displayio

module, 126
dither (displayio.ColorConverter attribute), 128
dither() (in module bitmaptools), 109
DitherAlgorithm (class in bitmaptools), 109
divisor (rotaryio.IncrementalEncoder attribute), 183
divmod()

built-in function, 262
dot() (in module ulab.numpy), 212
DOWN (digitalio.Pull attribute), 126
drain() (uasyncio.Stream method), 281
draw_line() (in module bitmaptools), 108
drive_mode (digitalio.DigitalInOut attribute), 125
DriveMode (class in digitalio), 124
driver, 298
dualbank

module, 140
dump() (in module json), 273
dumps() (in module json), 273
duty_cycle (pwmio.PWMOut attribute), 179

E
e (in module math), 159
Edge (class in countio), 122
eig() (in module ulab.numpy.linalg), 209
Ellipsis (built-in variable), 265
empty() (in module ulab.numpy), 210
enable() (in module gc), 270
enable() (in module is31fl3741), 154
enable() (in module usb_cdc), 218
enable() (in module usb_hid), 220
enable() (in module usb_midi), 223
enable_autoreload() (in module supervisor), 199
enable_interrupts() (in module microcontroller),

165
enable_usb_drive() (in module storage), 198
enabled (_bleio.Adapter attribute), 60
enabled (samd.Clock attribute), 190
enabled (wifi.Radio attribute), 230
encrypt_into() (aesio.AES method), 85
ENCRYPT_NO_MITM (_bleio.Attribute attribute), 62
ENCRYPT_WITH_MITM (_bleio.Attribute attribute), 62
End() (_eve._EVE method), 75
end() (re.match method), 276

Index 323

CircuitPython Documentation, Release 7.3.3

ENTERPRISE (wifi.AuthMode attribute), 229
enumerate()

built-in function, 262
EOFError, 264
EPaperDisplay (class in displayio), 132
erase_bonding() (_bleio.Adapter method), 61
erase_filesystem() (in module storage), 198
erase_nvs() (in module espidf), 141
erf() (in module math), 161
erf() (in module ulab.numpy), 213
erfc() (in module math), 161
erfc() (in module ulab.numpy), 213
errno

module, 269
ERROR_ACTIVE (canio.BusState attribute), 119
ERROR_PASSIVE (canio.BusState attribute), 119
ERROR_WARNING (canio.BusState attribute), 119
errorcode (in module errno), 269
espidf

module, 140
eval()

built-in function, 262
EVEN (busio.Parity attribute), 117
EVEN_BYTES (qrio.PixelPolicy attribute), 180
Event (class in keypad), 154
Event (class in uasyncio), 280
EventQueue (class in keypad), 155
events (keypad.KeyMatrix attribute), 156
events (keypad.Keys attribute), 157
events (keypad.ShiftRegisterKeys attribute), 158
EVERY_BYTE (qrio.PixelPolicy attribute), 180
Exception, 264
exec()

built-in function, 262
exit() (in module sys), 277
exit_and_deep_sleep_until_alarms() (in module

alarm), 87
exp() (in module math), 159
exp() (in module ulab.numpy), 213
expm1() (in module math), 160
expm1() (in module ulab.numpy), 213
extend() (array.array method), 266
extended (canio.Match attribute), 121
extended (canio.Message attribute), 122
extended (canio.RemoteTransmissionRequest attribute),

122
ExtType (class in msgpack), 168
eye() (in module ulab.numpy), 210

F
fabs() (in module math), 159
FALL (countio.Edge attribute), 122
feed() (watchdog.WatchDogTimer method), 228
FFI, 298

fft() (in module ulab.numpy.fft), 208
file (audiomp3.MP3Decoder attribute), 99
FileIO (class in io), 273
filesystem, 298
fill() (adafruit_pixelbuf.PixelBuf method), 84
fill() (displayio.Bitmap method), 128
fill() (framebuf.FrameBuffer method), 294
fill_rect() (framebuf.FrameBuffer method), 294
fill_region() (in module bitmaptools), 107
fill_row() (displayio.Display method), 132
fill_row() (framebufferio.FramebufferDisplay

method), 144
filter()

built-in function, 262
find() (in module usb.core), 216
find() (mdns.Server method), 162
fix (gnss.GNSS attribute), 148
FIX_2D (gnss.PositionFix attribute), 148
FIX_3D (gnss.PositionFix attribute), 148
flash() (in module dualbank), 140
flip() (in module ulab.numpy), 212
flip_x (displayio.TileGrid attribute), 139
flip_y (displayio.TileGrid attribute), 139
float (built-in class), 263
float (in module ulab.numpy), 211
FLOAT32 (in module uctypes), 286
FLOAT64 (in module uctypes), 286
floor() (in module math), 159
floor() (in module ulab.numpy), 213
floppyio

module, 141
FloydStenberg (bitmaptools.DitherAlgorithm at-

tribute), 109
flush() (_eve._EVE method), 70
flush() (btree.btree method), 292
flush() (usb_cdc.Serial method), 220
flux_readinto() (in module floppyio), 141
fmin() (in module ulab.scipy.optimize), 215
fmod() (in module math), 159
FONT (in module terminalio), 203
fontio

module, 142
FontProtocol (class in fontio), 142
format_exception() (in module traceback), 206
FourWire (class in displayio), 134
frame() (_stage.Layer method), 80
framebuf

module, 293
framebuf.GS2_HMSB (in module framebuf), 295
framebuf.GS4_HMSB (in module framebuf), 295
framebuf.GS8 (in module framebuf), 295
framebuf.MONO_HLSB (in module framebuf), 295
framebuf.MONO_HMSB (in module framebuf), 295
framebuf.MONO_VLSB (in module framebuf), 295

324 Index

CircuitPython Documentation, Release 7.3.3

framebuf.RGB565 (in module framebuf), 295
FrameBuffer (class in framebuf), 293
framebuffer (framebufferio.FramebufferDisplay

attribute), 143
FramebufferDisplay (class in framebufferio), 143
framebufferio

module, 143
frequency (busio.SPI attribute), 113
frequency (microcontroller.Processor attribute), 166
frequency (pwmio.PWMOut attribute), 179
frequency (rp2pio.StateMachine attribute), 186
frequency (samd.Clock attribute), 190
frequency (sdioio.SDCard property), 193
FrequencyIn (class in frequencyio), 144
frequencyio

module, 144
frexp() (in module math), 159
from_bytes() (int class method), 263
from_file() (in module synthio), 202
frozen module, 298
frozenset (built-in class), 263
full() (in module ulab.numpy), 211

G
gamepadshift

module, 146
GamePadShift (class in gamepadshift), 146
gamma() (in module math), 161
gamma() (in module ulab.numpy), 213
Garbage Collector, 298
gather() (in module uasyncio), 279
gc

module, 269
get() (btree.btree method), 292
get() (keypad.EventQueue method), 155
get_boot_device() (in module usb_hid), 221
get_bounding_box() (fontio.BuiltinFont method), 142
get_bounding_box() (fontio.FontProtocol method),

142
get_event_loop() (in module uasyncio), 282
get_exception_handler() (uasyncio.Loop method),

282
get_extra_info() (uasyncio.Stream method), 281
get_glyph() (fontio.BuiltinFont method), 142
get_glyph() (fontio.FontProtocol method), 142
get_into() (keypad.EventQueue method), 155
get_last_received_report() (usb_hid.Device

method), 223
get_pressed() (gamepadshift.GamePadShift method),

146
get_previous_traceback() (in module supervisor),

201
get_printoptions() (in module ulab.numpy), 212

get_secondary_terminal() (in module multitermi-
nal), 168

getaddrinfo() (socketpool.SocketPool method), 195
getattr()

built-in function, 263
getcwd() (in module os), 171
getmount() (in module storage), 197
getpass

module, 146
getpass() (in module getpass), 146
getrandbits() (in module random), 181
getvalue() (io.BytesIO method), 273
gifio

module, 146
GifWriter (class in gifio), 146
globals()

built-in function, 263
GLONASS (gnss.SatelliteSystem attribute), 148
Glyph (class in fontio), 142
gnss

module, 147
GNSS (class in gnss), 147
GPIO, 298
GPIO port, 298
GPS (gnss.SatelliteSystem attribute), 148
Group (class in displayio), 135
group() (re.match method), 276
groups() (re.match method), 276

H
hasattr()

built-in function, 263
hash()

built-in function, 263
hashlib

module, 271
hashlib.md5 (class in hashlib), 271
hashlib.sha1 (class in hashlib), 271
hashlib.sha256 (class in hashlib), 271
heap, 298
heap_caps_get_free_size() (in module espidf), 140
heap_caps_get_largest_free_block() (in module

espidf), 140
heap_caps_get_total_size() (in module espidf),

140
heap_lock() (in module micropython), 296
heap_locked() (in module micropython), 296
heap_unlock() (in module micropython), 296
heapify() (in module heapq), 266
heappop() (in module heapq), 266
heappush() (in module heapq), 266
heapq

module, 266
height (displayio.Bitmap attribute), 127

Index 325

CircuitPython Documentation, Release 7.3.3

height (displayio.Display attribute), 131
height (displayio.EPaperDisplay attribute), 133
height (displayio.OnDiskBitmap attribute), 137
height (displayio.TileGrid attribute), 139
height (framebufferio.FramebufferDisplay attribute),

143
height (is31fl3741.IS31FL3741_FrameBuffer attribute),

153
height (qrio.QRDecoder attribute), 180
height (rgbmatrix.RGBMatrix attribute), 182
height (vectorio.Rectangle attribute), 226
help()

built-in function, 233
hex()

built-in function, 263
hexdigest() (hashlib.hash method), 271
hexlify() (in module binascii), 267
hidden (displayio.Group attribute), 135
hidden (displayio.TileGrid attribute), 139
hline() (framebuf.FrameBuffer method), 294
hostname (mdns.RemoteService attribute), 161
hostname (mdns.Server attribute), 162
hostname (wifi.Radio attribute), 230

I
I2C (class in bitbangio), 102
I2C (class in busio), 111
I2C() (in module board), 110
I2CDevice (class in adafruit_bus_device.i2c_device), 81
I2CDisplay (class in displayio), 136
i2cperipheral

module, 149
I2CPeripheral (class in i2cperipheral), 150
I2CPeripheralRequest (class in i2cperipheral), 150
I2SOut (class in audiobusio), 90
id (canio.Match attribute), 121
id (canio.Message attribute), 122
id (canio.RemoteTransmissionRequest attribute), 122
id()

built-in function, 263
idProduct (usb.core.Device attribute), 217
idVendor (usb.core.Device attribute), 216
ifft() (in module ulab.numpy.fft), 209
ignore() (memorymonitor.AllocationAlarm method),

163
ilistdir() (storage.VfsFat method), 198
imag() (in module ulab.numpy.carray), 208
imagecapture

module, 151
ImageFormat (class in camera), 118
implementation (in module sys), 277
ImportError, 264
in_waiting (_bleio.CharacteristicBuffer attribute), 65
in_waiting (busio.UART attribute), 116

in_waiting (rp2pio.StateMachine attribute), 186
in_waiting (usb_cdc.Serial attribute), 219
in_waiting() (canio.Listener method), 121
INCL (in module btree), 293
incoming_packet_length (_bleio.PacketBuffer at-

tribute), 68
IncrementalEncoder (class in rotaryio), 183
IndentationError, 264
index() (displayio.Group method), 135
IndexError, 264
INDICATE (_bleio.Characteristic attribute), 63
info() (in module uheap), 208
INPUT (digitalio.Direction attribute), 126
input()

built-in function, 263
insert() (displayio.Group method), 135
instance_name (mdns.RemoteService attribute), 161
instance_name (mdns.Server attribute), 162
int (built-in class), 263
INT16 (in module uctypes), 286
int16 (in module ulab.numpy), 211
INT32 (in module uctypes), 286
INT64 (in module uctypes), 286
INT8 (in module uctypes), 286
int8 (in module ulab.numpy), 211
interned string, 298
interp() (in module ulab.numpy), 210
inv() (in module ulab.numpy.linalg), 209
INVALID (gnss.PositionFix attribute), 148
io

module, 272
ip_address() (in module ipaddress), 152
ipaddress

module, 152
ipoll() (select.poll method), 289
ipv4_address (wifi.Radio attribute), 231
ipv4_address_ap (wifi.Radio attribute), 231
ipv4_dns (wifi.Radio attribute), 231
ipv4_gateway (wifi.Radio attribute), 230
ipv4_gateway_ap (wifi.Radio attribute), 230
ipv4_subnet (wifi.Radio attribute), 230
ipv4_subnet_ap (wifi.Radio attribute), 231
IPv4Address (class in ipaddress), 152
is31fl3741

module, 153
IS31FL3741 (class in is31fl3741), 153
IS31FL3741_FrameBuffer (class in is31fl3741), 153
is_kernel_driver_active() (usb.core.Device

method), 217
is_read (i2cperipheral.I2CPeripheralRequest attribute),

150
is_restart (i2cperipheral.I2CPeripheralRequest

attribute), 151
is_set() (uasyncio.Event method), 280

326 Index

CircuitPython Documentation, Release 7.3.3

is_transparent() (displayio.Palette method), 138
isfinite() (in module math), 159
isinf() (in module math), 159
isinstance()

built-in function, 263
isnan() (in module math), 160
issubclass()

built-in function, 263
items() (btree.btree method), 292
iter()

built-in function, 263

J
JPG (camera.ImageFormat attribute), 118
json

module, 273
Jump() (_eve._EVE method), 75

K
kbd_intr() (in module micropython), 297
key_count (keypad.KeyMatrix attribute), 156
key_count (keypad.Keys attribute), 157
key_count (keypad.ShiftRegisterKeys attribute), 158
key_number (keypad.Event attribute), 154
key_number_to_row_column() (keypad.KeyMatrix

method), 156
KEYBOARD (usb_hid.Device attribute), 222
KeyboardInterrupt, 265
KeyError, 265
KeyMatrix (class in keypad), 156
keypad

module, 154
Keys (class in keypad), 157
keys() (btree.btree method), 292

L
label (storage.VfsFat attribute), 198
last_received_report (usb_hid.Device attribute),

222
latitude (gnss.GNSS attribute), 147
Layer (class in _stage), 80
ldexp() (in module math), 160
LEN (wifi.Packet attribute), 230
len()

built-in function, 263
length (canio.RemoteTransmissionRequest attribute),

122
LESC_ENCRYPT_WITH_MITM (_bleio.Attribute attribute),

63
level (audiomixer.MixerVoice attribute), 98
lgamma() (in module math), 161
lgamma() (in module ulab.numpy), 213
light_sleep_until_alarms() (in module alarm), 87
line() (framebuf.FrameBuffer method), 294

LineWidth() (_eve._EVE method), 78
linspace() (in module ulab.numpy), 211
list (built-in class), 263
listdir() (in module os), 171
listen() (canio.CAN method), 120
listen() (socketpool.Socket method), 194
listen() (ssl.SSLSocket method), 196
Listener (class in canio), 120
LITTLE_ENDIAN (in module uctypes), 286
load() (in module json), 273
load_verify_locations() (ssl.SSLContext method),

195
loads() (in module json), 273
locals()

built-in function, 263
localtime() (in module time), 205
location (vectorio.Circle attribute), 225
location (vectorio.Polygon attribute), 226
location (vectorio.Rectangle attribute), 227
Lock (class in uasyncio), 280
locked() (uasyncio.Lock method), 280
log() (in module math), 160
log() (in module ulab.numpy), 213
log10() (in module math), 160
log10() (in module ulab.numpy), 214
log2() (in module math), 160
log2() (in module ulab.numpy), 214
logspace() (in module ulab.numpy), 211
longitude (gnss.GNSS attribute), 148
LookupError, 265
Loop (class in uasyncio), 282
loopback (canio.CAN attribute), 120
lost() (in module wifi), 229

M
mac_address (wifi.Radio attribute), 230
mac_address_ap (wifi.Radio attribute), 230
machine (os._Uname attribute), 171
Macro() (_eve._EVE method), 75
make_opaque() (displayio.ColorConverter method),

129
make_opaque() (displayio.Palette method), 138
make_transparent() (displayio.ColorConverter

method), 129
make_transparent() (displayio.Palette method), 138
manufacturer (usb.core.Device attribute), 217
map()

built-in function, 263
mask (canio.Match attribute), 121
Match (class in canio), 121
match() (in module re), 275
match() (re.regex method), 276
matches() (_bleio.ScanEntry method), 69
math

Index 327

CircuitPython Documentation, Release 7.3.3

module, 159
max()

built-in function, 263
max() (in module ulab.numpy), 212
max_length (_bleio.Characteristic attribute), 63
max_packet_length (_bleio.Connection attribute), 66
max_stack_usage() (in module ustack), 224
maxlen (pulseio.PulseIn attribute), 176
maxsize (in module sys), 277
MCU, 299
mdns

module, 161
mean() (in module ulab.numpy), 212
median() (in module ulab.numpy), 212
mem_alloc() (in module gc), 270
mem_free() (in module gc), 270
mem_info() (in module micropython), 296
MemoryError, 141, 265
memorymonitor

module, 163
memoryview (built-in class), 263
Message (class in canio), 121
mfm_readinto() (in module floppyio), 141
microcontroller

module, 164
micropython

module, 295
MicroPython port, 299
MicroPython Unix port, 299
MidiTrack (class in synthio), 202
min()

built-in function, 263
min() (in module ulab.numpy), 212
Mixer (class in audiomixer), 97
MixerVoice (class in audiomixer), 98
mkdir() (in module os), 171
mkdir() (storage.VfsFat method), 198
mkfs() (storage.VfsFat method), 198
mktime() (in module time), 205
mode (watchdog.WatchDogTimer attribute), 228
MODE_CBC (in module aesio), 84
MODE_CTR (in module aesio), 84
MODE_ECB (in module aesio), 84
modf() (in module math), 160
modify() (select.poll method), 288
module

_bleio, 59
_eve, 70
_pew, 79
_stage, 79
adafruit_bus_device, 81
adafruit_bus_device.i2c_device, 81
adafruit_bus_device.spi_device, 82
adafruit_pixelbuf, 83

aesio, 84
alarm, 85
alarm.pin, 85
alarm.time, 86
alarm.touch, 86
analogio, 88
array, 266
atexit, 90
audiobusio, 90
audiocore, 93
audioio, 95
audiomixer, 97
audiomp3, 99
audiopwmio, 100
binascii, 267
bitbangio, 102
bitmaptools, 106
bitops, 109
board, 110
btree, 290
busio, 110
camera, 117
canio, 118
collections, 267
countio, 122
digitalio, 124
displayio, 126
dualbank, 140
errno, 269
espidf, 140
floppyio, 141
fontio, 142
framebuf, 293
framebufferio, 143
frequencyio, 144
gamepadshift, 146
gc, 269
getpass, 146
gifio, 146
gnss, 147
hashlib, 271
heapq, 266
i2cperipheral, 149
imagecapture, 151
io, 272
ipaddress, 152
is31fl3741, 153
json, 273
keypad, 154
math, 159
mdns, 161
memorymonitor, 163
microcontroller, 164
micropython, 295

328 Index

CircuitPython Documentation, Release 7.3.3

msgpack, 167
multiterminal, 168
neopixel_write, 169
nvm, 169
onewireio, 170
os, 171
paralleldisplay, 173
ps2io, 173
pulseio, 175
pwmio, 178
qrio, 180
rainbowio, 181
random, 181
re, 274
rgbmatrix, 182
rotaryio, 183
rp2pio, 184
rtc, 189
samd, 190
sdcardio, 190
sdioio, 191
select, 288
sharpdisplay, 193
socketpool, 193
ssl, 195
storage, 197
struct, 199
supervisor, 199
synthio, 202
sys, 276
terminalio, 203
time, 204
touchio, 205
traceback, 206
uasyncio, 278
uctypes, 283
uheap, 208
ulab, 208
ulab.numpy, 208
ulab.numpy.carray, 208
ulab.numpy.fft, 208
ulab.numpy.linalg, 209
ulab.scipy, 214
ulab.scipy.linalg, 214
ulab.scipy.optimize, 215
ulab.scipy.signal, 216
ulab.user, 216
usb, 216
usb.core, 216
usb_cdc, 218
usb_hid, 220
usb_host, 223
usb_midi, 223
ustack, 224

vectorio, 225
watchdog, 227
wifi, 228
zlib, 232

modules (in module sys), 277
Monitor (class in wifi), 229
monotonic() (in module time), 204
monotonic_ns() (in module time), 205
monotonic_time (alarm.time.TimeAlarm attribute), 86
mount() (in module storage), 197
mount() (storage.VfsFat method), 198
MOUSE (usb_hid.Device attribute), 222
move() (_stage.Layer method), 80
move() (_stage.Text method), 80
MP3Decoder (class in audiomp3), 99
MpyError, 265
msgpack

module, 167
multiterminal

module, 168

N
name (_bleio.Adapter attribute), 60
namedtuple() (in module collections), 268
NameError, 265
native, 299
NATIVE (in module uctypes), 286
ndarray (class in ulab.numpy), 212
ndinfo() (in module ulab.numpy), 212
neopixel_write

module, 169
neopixel_write() (in module neopixel_write), 169
Network (class in wifi), 229
new_event_loop() (in module uasyncio), 282
newton() (in module ulab.scipy.optimize), 215
next()

built-in function, 263
NO_ACCESS (_bleio.Attribute attribute), 62
nodename (os._Uname attribute), 171
Nop() (_eve._EVE method), 75
norm() (in module ulab.numpy.linalg), 210
NORMAL (microcontroller.RunMode attribute), 166
NOTIFY (_bleio.Characteristic attribute), 63
NotImplemented (built-in variable), 265
NotImplementedError, 265
nvm

module, 169
nvm (in module microcontroller), 165

O
object (built-in class), 263
oct()

built-in function, 263
ODD (busio.Parity attribute), 117

Index 329

CircuitPython Documentation, Release 7.3.3

ODD_BYTES (qrio.PixelPolicy attribute), 180
on_next_reset() (in module microcontroller), 165
OnDiskBitmap (class in displayio), 136
ones() (in module ulab.numpy), 211
OneWire (class in onewireio), 170
onewireio

module, 170
OPEN (_bleio.Attribute attribute), 62
OPEN (wifi.AuthMode attribute), 228
open()

built-in function, 263
open() (in module btree), 292
open() (in module io), 273
open() (storage.VfsFat method), 198
open_connection() (in module uasyncio), 281
OPEN_DRAIN (digitalio.DriveMode attribute), 124
opt_level() (in module micropython), 296
ord()

built-in function, 263
OrderedDict() (in module collections), 268
os

module, 171
OSError, 265
out_waiting (usb_cdc.Serial attribute), 219
outgoing_packet_length (_bleio.PacketBuffer at-

tribute), 68
OUTPUT (digitalio.Direction attribute), 126
overflowed (keypad.EventQueue attribute), 155
OverflowError, 265

P
pack() (in module msgpack), 168
pack() (in module struct), 199
pack_into() (_bleio.UUID method), 70
pack_into() (in module struct), 199
packed (ipaddress.IPv4Address attribute), 152
Packet (class in wifi), 230
packet() (in module wifi), 229
PacketBuffer (class in _bleio), 67
pair() (_bleio.Connection method), 66
paired (_bleio.Connection attribute), 66
Palette (class in displayio), 137
PaletteSource() (_eve._EVE method), 76
ParallelBus (class in paralleldisplay), 173
paralleldisplay

module, 173
ParallelImageCapture (class in imagecapture), 151
parent (samd.Clock attribute), 190
Parity (class in busio), 117
path (in module sys), 277
pause() (audiobusio.I2SOut method), 92
pause() (audioio.AudioOut method), 96
pause() (audiopwmio.PWMAudioOut method), 102
pause() (frequencyio.FrequencyIn method), 145

pause() (pulseio.PulseIn method), 176
paused (audiobusio.I2SOut attribute), 91
paused (audioio.AudioOut attribute), 96
paused (audiopwmio.PWMAudioOut attribute), 101
paused (pulseio.PulseIn attribute), 176
payload (qrio.QRInfo attribute), 181
PDMIn (class in audiobusio), 92
pending (rp2pio.StateMachine property), 187
PewPew (class in _pew), 79
pi (in module math), 159
pin (alarm.pin.PinAlarm attribute), 86
pin (alarm.touch.TouchAlarm attribute), 86
Pin (class in microcontroller), 165
PinAlarm (class in alarm.pin), 85
ping() (wifi.Radio method), 232
pins_are_sequential() (in module rp2pio), 184
pixel() (framebuf.FrameBuffer method), 294
pixel_shader (displayio.OnDiskBitmap attribute), 137
pixel_shader (displayio.TileGrid attribute), 139
pixel_shader (vectorio.Circle attribute), 225
pixel_shader (vectorio.Polygon attribute), 226
pixel_shader (vectorio.Rectangle attribute), 227
PixelBuf (class in adafruit_pixelbuf), 83
PixelPolicy (class in qrio), 180
platform (in module sys), 278
play() (audiobusio.I2SOut method), 91
play() (audioio.AudioOut method), 96
play() (audiomixer.Mixer method), 98
play() (audiomixer.MixerVoice method), 98
play() (audiopwmio.PWMAudioOut method), 101
playing (audiobusio.I2SOut attribute), 91
playing (audioio.AudioOut attribute), 96
playing (audiomixer.Mixer attribute), 97
playing (audiomixer.MixerVoice attribute), 98
playing (audiopwmio.PWMAudioOut attribute), 101
points (vectorio.Polygon attribute), 226
PointSize() (_eve._EVE method), 78
poll() (in module select), 288
poll() (select.poll method), 288
Polygon (class in vectorio), 225
pop() (displayio.Group method), 135
popleft() (collections.deque method), 268
popleft() (ps2io.Ps2 method), 174
popleft() (pulseio.PulseIn method), 176
port, 299
Port (class in usb_host), 223
port (mdns.RemoteService attribute), 162
PortIn (class in usb_midi), 223
PortOut (class in usb_midi), 224
ports (in module usb_midi), 223
position (rotaryio.IncrementalEncoder attribute), 183
PositionFix (class in gnss), 148
pow()

built-in function, 263

330 Index

CircuitPython Documentation, Release 7.3.3

pow() (in module math), 160
POWER_ON (microcontroller.ResetReason attribute), 166
pressed (keypad.Event attribute), 154
print()

built-in function, 263
print_exception() (in module traceback), 207
Processor (class in microcontroller), 165
product (usb.core.Device attribute), 217
properties (_bleio.Characteristic attribute), 63
property()

built-in function, 264
protocol (mdns.RemoteService attribute), 161
Ps2 (class in ps2io), 173
ps2io

module, 173
PSK (wifi.AuthMode attribute), 229
PTR (in module uctypes), 286
PUBLIC (_bleio.Address attribute), 62
Pull (class in digitalio), 126
pull (digitalio.DigitalInOut attribute), 125
PulseIn (class in pulseio), 175
pulseio

module, 175
PulseOut (class in pulseio), 177
PUSH_PULL (digitalio.DriveMode attribute), 124
PWMAudioOut (class in audiopwmio), 100
pwmio

module, 178
PWMOut (class in pwmio), 178

Q
qr() (in module ulab.numpy.linalg), 210
QRDecoder (class in qrio), 180
QRInfo (class in qrio), 181
qrio

module, 180
qstr_info() (in module micropython), 296
queue (in module wifi), 229
queued() (in module wifi), 229
QZSS_L1CA (gnss.SatelliteSystem attribute), 148
QZSS_L1S (gnss.SatelliteSystem attribute), 148

R
radians() (in module math), 160
radians() (in module ulab.numpy), 214
Radio (class in wifi), 230
radio (in module wifi), 228
radius (vectorio.Circle attribute), 225
rainbowio

module, 181
RAISE (watchdog.WatchDogMode attribute), 228
randint() (in module random), 181
random

module, 181

random() (in module random), 182
RANDOM_PRIVATE_NON_RESOLVABLE (_bleio.Address at-

tribute), 62
RANDOM_PRIVATE_RESOLVABLE (_bleio.Address at-

tribute), 62
RANDOM_STATIC (_bleio.Address attribute), 62
randrange() (in module random), 181
range()

built-in function, 264
RAW (wifi.Packet attribute), 230
raw_value (touchio.TouchIn attribute), 206
RawSample (class in audiocore), 93
re

module, 274
READ (_bleio.Characteristic attribute), 63
read() (_bleio.CharacteristicBuffer method), 65
read() (busio.UART method), 116
read() (i2cperipheral.I2CPeripheralRequest method),

151
read() (uasyncio.Stream method), 281
read() (usb.core.Device method), 217
read() (usb_cdc.Serial method), 219
read() (usb_midi.PortIn method), 224
read_bit() (onewireio.OneWire method), 171
readblocks() (sdcardio.SDCard method), 191
readblocks() (sdioio.SDCard method), 192
readexactly() (uasyncio.Stream method), 281
readfrom_into() (bitbangio.I2C method), 103
readfrom_into() (busio.I2C method), 112
readinto() (_bleio.CharacteristicBuffer method), 65
readinto() (_bleio.PacketBuffer method), 68
readinto() (adafruit_bus_device.i2c_device.I2CDevice

method), 81
readinto() (bitbangio.SPI method), 105
readinto() (busio.SPI method), 114
readinto() (busio.UART method), 116
readinto() (in module bitmaptools), 108
readinto() (rp2pio.StateMachine method), 187
readinto() (uasyncio.Stream method), 281
readinto() (usb_cdc.Serial method), 219
readinto() (usb_midi.PortIn method), 224
readline() (_bleio.CharacteristicBuffer method), 65
readline() (busio.UART method), 116
readline() (uasyncio.Stream method), 281
readline() (usb_cdc.Serial method), 219
readlines() (usb_cdc.Serial method), 220
real() (in module ulab.numpy.carray), 208
receive() (canio.Listener method), 121
receive_error_count (canio.CAN attribute), 119
record() (audiobusio.PDMIn method), 92
rect() (framebuf.FrameBuffer method), 294
Rectangle (class in vectorio), 226
recv_into() (socketpool.Socket method), 194
recv_into() (ssl.SSLSocket method), 196

Index 331

CircuitPython Documentation, Release 7.3.3

recvfrom_into() (socketpool.Socket method), 194
reference_voltage (analogio.AnalogIn attribute), 89
refresh() (displayio.Display method), 131
refresh() (displayio.EPaperDisplay method), 134
refresh() (framebufferio.FramebufferDisplay method),

143
refresh() (is31fl3741.IS31FL3741_FrameBuffer

method), 153
refresh() (rgbmatrix.RGBMatrix method), 182
register() (_eve._EVE method), 70
register() (in module atexit), 90
register() (select.poll method), 288
release (os._Uname attribute), 171
release() (uasyncio.Lock method), 280
release_displays() (in module displayio), 126
released (keypad.Event attribute), 155
reload() (in module supervisor), 199
ReloadException, 265
remote (_bleio.Service attribute), 69
RemoteService (class in mdns), 161
RemoteTransmissionRequest (class in canio), 122
remount() (in module storage), 197
remove() (displayio.Group method), 135
remove() (in module os), 171
rename() (in module os), 172
render() (in module _stage), 79
REPL, 299
REPL_RELOAD (supervisor.RunReason attribute), 201
repr()

built-in function, 264
request() (i2cperipheral.I2CPeripheral method), 150
RESCUE_DEBUG (microcontroller.ResetReason attribute),

166
RESET (watchdog.WatchDogMode attribute), 228
reset() (countio.Counter method), 123
reset() (displayio.FourWire method), 134
reset() (displayio.I2CDisplay method), 136
reset() (in module is31fl3741), 154
reset() (in module microcontroller), 165
reset() (keypad.KeyMatrix method), 156
reset() (keypad.Keys method), 157
reset() (keypad.ShiftRegisterKeys method), 158
reset() (onewireio.OneWire method), 170
reset() (paralleldisplay.ParallelBus method), 173
reset_input_buffer() (_bleio.CharacteristicBuffer

method), 65
reset_input_buffer() (busio.UART method), 117
reset_input_buffer() (usb_cdc.Serial method), 220
reset_output_buffer() (usb_cdc.Serial method), 220
RESET_PIN (microcontroller.ResetReason attribute), 166
reset_reason (microcontroller.Processor attribute),

166
reset_terminal() (in module supervisor), 201
ResetReason (class in microcontroller), 166

restart() (canio.CAN method), 120
restart() (rp2pio.StateMachine method), 186
RestoreContext() (_eve._EVE method), 76
resume() (audiobusio.I2SOut method), 92
resume() (audioio.AudioOut method), 96
resume() (audiopwmio.PWMAudioOut method), 102
resume() (frequencyio.FrequencyIn method), 145
resume() (pulseio.PulseIn method), 176
Return() (_eve._EVE method), 76
reversed()

built-in function, 264
RGB555 (displayio.Colorspace attribute), 126
RGB555_SWAPPED (displayio.Colorspace attribute), 127
RGB565 (camera.ImageFormat attribute), 118
RGB565 (displayio.Colorspace attribute), 126
RGB565_SWAPPED (displayio.Colorspace attribute), 126
RGB888 (displayio.Colorspace attribute), 126
rgbmatrix

module, 182
RGBMatrix (class in rgbmatrix), 182
RISE (countio.Edge attribute), 122
RISE_AND_FALL (countio.Edge attribute), 123
rmdir() (in module os), 171
rmdir() (storage.VfsFat method), 198
rms_level (audiomp3.MP3Decoder attribute), 100
RoleError, 59
roll() (in module ulab.numpy), 212
root_group (displayio.Display attribute), 131
rotaryio

module, 183
rotation (displayio.Display attribute), 131
rotation (displayio.EPaperDisplay attribute), 133
rotation (framebufferio.FramebufferDisplay attribute),

143
rotozoom() (in module bitmaptools), 106
round()

built-in function, 264
row_column_to_key_number() (keypad.KeyMatrix

method), 157
rp2pio

module, 184
rssi (_bleio.ScanEntry attribute), 68
rssi (wifi.Network attribute), 230
RSSI (wifi.Packet attribute), 230
rtc

module, 189
RTC (class in rtc), 189
run() (in module uasyncio), 279
run() (rp2pio.StateMachine method), 186
run_forever() (uasyncio.Loop method), 282
run_reason (supervisor.Runtime attribute), 202
run_until_complete() (uasyncio.Loop method), 282
RunMode (class in microcontroller), 166
RunReason (class in supervisor), 201

332 Index

CircuitPython Documentation, Release 7.3.3

Runtime (class in supervisor), 201
runtime (in module supervisor), 199
RuntimeError, 265
rxstall (rp2pio.StateMachine attribute), 186

S
SAFE_MODE (microcontroller.RunMode attribute), 166
samd

module, 190
sample_rate (audiobusio.PDMIn attribute), 92
sample_rate (audiocore.RawSample attribute), 93
sample_rate (audiocore.WaveFile attribute), 94
sample_rate (audiomixer.Mixer attribute), 97
sample_rate (audiomp3.MP3Decoder attribute), 100
sample_rate (synthio.MidiTrack attribute), 203
samplerate (in module floppyio), 141
samples_decoded (audiomp3.MP3Decoder attribute),

100
SatelliteSystem (class in gnss), 148
SaveContext() (_eve._EVE method), 76
SBAS (gnss.SatelliteSystem attribute), 148
scale (displayio.Group attribute), 135
scan() (bitbangio.I2C method), 103
scan() (busio.I2C method), 111
scan_response (_bleio.ScanEntry attribute), 68
ScanEntry (class in _bleio), 68
ScannedNetworks (class in wifi), 232
ScanResults (class in _bleio), 69
schedule() (in module micropython), 297
schedule_secondary_terminal_read() (in module

multiterminal), 169
ScissorSize() (_eve._EVE method), 76
ScissorXY() (_eve._EVE method), 76
scroll() (framebuf.FrameBuffer method), 294
SDCard (class in sdcardio), 190
SDCard (class in sdioio), 191
sdcardio

module, 190
sdioio

module, 191
search() (in module re), 275
search() (re.regex method), 276
secondary (_bleio.Service attribute), 69
SecurityError, 59
seed() (in module random), 181
select

module, 288
select() (in module select), 288
send() (canio.CAN method), 120
send() (displayio.FourWire method), 134
send() (displayio.I2CDisplay method), 136
send() (paralleldisplay.ParallelBus method), 173
send() (pulseio.PulseOut method), 177
send() (socketpool.Socket method), 194

send() (ssl.SSLSocket method), 197
send_report() (usb_hid.Device method), 222
sendcmd() (ps2io.Ps2 method), 174
sendto() (socketpool.Socket method), 194
sep (in module os), 172
Serial (class in usb_cdc), 219
serial_bytes_available (supervisor.Runtime at-

tribute), 201
serial_connected (supervisor.Runtime attribute), 201
serial_number (usb.core.Device attribute), 217
Server (class in mdns), 162
Server (class in uasyncio), 282
service (_bleio.Characteristic attribute), 63
Service (class in _bleio), 69
service_type (mdns.RemoteService attribute), 161
set (built-in class), 264
set() (uasyncio.Event method), 280
set_adapter() (in module _bleio), 59
set_boundary() (displayio.Shape method), 138
set_cccd() (_bleio.Characteristic method), 64
set_default_verify_paths() (ssl.SSLContext

method), 196
set_exception_handler() (uasyncio.Loop method),

282
set_global_current() (in module is31fl3741), 154
set_led() (in module is31fl3741), 154
set_next_code_file() (in module supervisor), 199
set_next_stack_limit() (in module supervisor), 199
set_printoptions() (in module ulab.numpy), 212
set_rgb_status_brightness() (in module supervi-

sor), 199
set_secondary_terminal() (in module multitermi-

nal), 168
set_time_source() (in module rtc), 189
setattr()

built-in function, 264
setblocking() (socketpool.Socket method), 194
setblocking() (ssl.SSLSocket method), 197
settimeout() (socketpool.Socket method), 194
settimeout() (ssl.SSLSocket method), 197
Shape (class in displayio), 138
sharpdisplay

module, 193
ShiftRegisterKeys (class in keypad), 157
show() (adafruit_pixelbuf.PixelBuf method), 84
show() (displayio.Display method), 131
show() (displayio.EPaperDisplay method), 134
show() (framebufferio.FramebufferDisplay method), 143
SIGNED_NO_MITM (_bleio.Attribute attribute), 63
SIGNED_WITH_MITM (_bleio.Attribute attribute), 63
silent (canio.CAN attribute), 120
sin() (in module math), 160
sin() (in module ulab.numpy), 214
sinh() (in module math), 160

Index 333

CircuitPython Documentation, Release 7.3.3

sinh() (in module ulab.numpy), 214
size (_bleio.UUID attribute), 70
sizeof() (in module uctypes), 286
sleep() (in module time), 204
sleep() (in module uasyncio), 279
sleep_memory (in module alarm), 86
sleep_ms() (in module uasyncio), 279
SleepMemory (class in alarm), 87
slice (built-in class), 264
SOCK_DGRAM (socketpool.SocketPool attribute), 195
SOCK_RAW (socketpool.SocketPool attribute), 195
SOCK_STREAM (socketpool.SocketPool attribute), 195
Socket (class in socketpool), 193
socket() (socketpool.SocketPool method), 195
socketpool

module, 193
SocketPool (class in socketpool), 195
SOFTWARE (microcontroller.ResetReason attribute), 166
solve_triangular() (in module ulab.scipy.linalg), 214
sort() (displayio.Group method), 136
sort() (in module ulab.numpy), 212
sort_complex() (in module ulab.numpy.carray), 208
sorted()

built-in function, 264
span() (re.match method), 276
spectrogram() (in module ulab.scipy.signal), 216
SPI (class in bitbangio), 104
SPI (class in busio), 113
SPI() (in module board), 110
SPIDevice (class in adafruit_bus_device.spi_device), 82
split() (re.regex method), 276
sqrt() (in module math), 160
sqrt() (in module ulab.numpy), 214
ssid (wifi.Network attribute), 229
ssl

module, 195
SSLContext (class in ssl), 195
SSLSocket (class in ssl), 196
stack_size() (in module ustack), 224
stack_usage() (in module ustack), 224
stack_use() (in module micropython), 296
start() (re.match method), 276
start_advertising() (_bleio.Adapter method), 60
start_ap() (wifi.Radio method), 231
start_scan() (_bleio.Adapter method), 61
start_scanning_networks() (wifi.Radio method),

231
start_server() (in module uasyncio), 281
start_station() (wifi.Radio method), 231
STARTUP (supervisor.RunReason attribute), 201
stat() (in module os), 172
stat() (storage.VfsFat method), 198
state (canio.CAN attribute), 120
StateMachine (class in rp2pio), 184

staticmethod()
built-in function, 264

statvfs() (in module os), 172
statvfs() (storage.VfsFat method), 198
std() (in module ulab.numpy), 212
stderr (in module sys), 278
stdin (in module sys), 278
stdout (in module sys), 278
StencilFunc() (_eve._EVE method), 76
StencilMask() (_eve._EVE method), 77
StencilOp() (_eve._EVE method), 77
stop() (audiobusio.I2SOut method), 92
stop() (audioio.AudioOut method), 96
stop() (audiomixer.MixerVoice method), 98
stop() (audiopwmio.PWMAudioOut method), 102
stop() (rp2pio.StateMachine method), 186
stop() (uasyncio.Loop method), 282
stop_advertising() (_bleio.Adapter method), 60
stop_ap() (wifi.Radio method), 231
stop_background_write() (rp2pio.StateMachine

method), 187
stop_scan() (_bleio.Adapter method), 61
stop_scanning_networks() (wifi.Radio method), 231
stop_station() (wifi.Radio method), 231
stop_voice() (audiomixer.Mixer method), 98
StopAsyncIteration, 265
StopIteration, 265
storage

module, 197
str (built-in class), 264
stream, 299
Stream (class in uasyncio), 281
StringIO (class in io), 273
struct

module, 199
struct (class in uctypes), 286
struct_time (class in time), 204
sub() (in module re), 275
sub() (re.regex method), 276
sum()

built-in function, 264
sum() (in module ulab.numpy), 212
super()

built-in function, 264
supervisor

module, 199
SUPERVISOR_RELOAD (supervisor.RunReason attribute),

201
switch() (in module dualbank), 140
switch_to_input() (digitalio.DigitalInOut method),

125
switch_to_output() (digitalio.DigitalInOut method),

125
sync() (in module os), 172

334 Index

CircuitPython Documentation, Release 7.3.3

sync() (sdcardio.SDCard method), 191
SyntaxError, 265
synthio

module, 202
sys

module, 276
sysname (os._Uname attribute), 171
SystemExit, 265

T
Tag() (_eve._EVE method), 77
TagMask() (_eve._EVE method), 77
take_picture() (camera.Camera method), 118
tan() (in module math), 160
tan() (in module ulab.numpy), 214
tanh() (in module math), 160
tanh() (in module ulab.numpy), 214
Task (class in uasyncio), 280
temperature (microcontroller.Processor attribute), 166
Terminal (class in terminalio), 203
terminalio

module, 203
Text (class in _stage), 80
text() (framebuf.FrameBuffer method), 294
TextIOWrapper (class in io), 273
threshold (touchio.TouchIn attribute), 206
threshold() (in module gc), 270
ticks_ms() (in module supervisor), 200
tile_height (displayio.TileGrid attribute), 139
tile_width (displayio.TileGrid attribute), 139
TileGrid (class in displayio), 138
time

module, 204
time() (in module time), 204
time_to_refresh (displayio.EPaperDisplay attribute),

133
TimeAlarm (class in alarm.time), 86
timeout (busio.UART attribute), 116
timeout (canio.Listener attribute), 121
timeout (usb_cdc.Serial attribute), 219
timeout (watchdog.WatchDogTimer attribute), 228
TimeoutError, 265
timestamp (gnss.GNSS attribute), 148
timestamp (keypad.Event attribute), 155
to_bytes() (int method), 263
TouchAlarm (class in alarm.touch), 86
TouchIn (class in touchio), 205
touchio

module, 205
trace() (in module ulab.numpy), 212
traceback

module, 206
transmit_error_count (canio.CAN attribute), 119
transpose_xy (displayio.TileGrid attribute), 139

trapz() (in module ulab.numpy), 210
trunc() (in module math), 160
try_lock() (bitbangio.I2C method), 103
try_lock() (bitbangio.SPI method), 105
try_lock() (busio.I2C method), 112
try_lock() (busio.SPI method), 114
tuple (built-in class), 264
txstall (rp2pio.StateMachine attribute), 186
type (_bleio.Address attribute), 62
type()

built-in function, 264
TypeError, 265

U
UART, 299
UART (class in busio), 115
UART() (in module board), 110
uasyncio

module, 278
uctypes

module, 283
UF2 (microcontroller.RunMode attribute), 167
uheap

module, 208
uid (microcontroller.Processor attribute), 166
UINT16 (in module uctypes), 286
uint16 (in module ulab.numpy), 211
UINT32 (in module uctypes), 286
UINT64 (in module uctypes), 286
UINT8 (in module uctypes), 286
uint8 (in module ulab.numpy), 211
ulab

module, 208
ulab.numpy

module, 208
ulab.numpy.carray

module, 208
ulab.numpy.fft

module, 208
ulab.numpy.linalg

module, 209
ulab.scipy

module, 214
ulab.scipy.linalg

module, 214
ulab.scipy.optimize

module, 215
ulab.scipy.signal

module, 216
ulab.user

module, 216
umount() (in module storage), 197
umount() (storage.VfsFat method), 199
uname() (in module os), 171

Index 335

CircuitPython Documentation, Release 7.3.3

unhexlify() (in module binascii), 267
UnicodeError, 265
uniform() (in module random), 182
UNKNOWN (microcontroller.ResetReason attribute), 166
unlock() (bitbangio.I2C method), 103
unlock() (bitbangio.SPI method), 105
unlock() (busio.I2C method), 112
unlock() (busio.SPI method), 114
unpack() (in module msgpack), 168
unpack() (in module struct), 199
unpack_from() (in module struct), 199
unregister() (in module atexit), 90
unregister() (select.poll method), 288
UP (digitalio.Pull attribute), 126
update() (gnss.GNSS method), 148
update() (hashlib.hash method), 271
update_refresh_mode() (displayio.EPaperDisplay

method), 134
urandom() (in module os), 172
usage (usb_hid.Device attribute), 222
usage_page (usb_hid.Device attribute), 222
usb

module, 216
usb.core

module, 216
usb_cdc

module, 218
usb_connected (supervisor.Runtime attribute), 201
usb_hid

module, 220
usb_host

module, 223
usb_midi

module, 223
USBError, 216
USBTimeoutError, 216
ustack

module, 224
uuid (_bleio.Characteristic attribute), 63
uuid (_bleio.Descriptor attribute), 67
uuid (_bleio.Service attribute), 69
UUID (class in _bleio), 69
uuid128 (_bleio.UUID attribute), 70
uuid16 (_bleio.UUID attribute), 70

V
value (_bleio.Characteristic attribute), 63
value (_bleio.Descriptor attribute), 67
value (alarm.pin.PinAlarm attribute), 86
value (analogio.AnalogIn attribute), 88
value (analogio.AnalogOut attribute), 89
value (digitalio.DigitalInOut attribute), 125
value (touchio.TouchIn attribute), 206
ValueError, 265

values() (btree.btree method), 292
vectorio

module, 225
vectorize() (in module ulab.numpy), 214
version (in module sys), 278
version (ipaddress.IPv4Address attribute), 152
version (os._Uname attribute), 171
version_info (in module sys), 278
Vertex2f() (_eve._EVE method), 77
Vertex2ii() (_eve._EVE method), 77
VertexFormat() (_eve._EVE method), 78
VertexTranslateX() (_eve._EVE method), 78
VertexTranslateY() (_eve._EVE method), 78
VfsFat (class in storage), 198
vline() (framebuf.FrameBuffer method), 294
voice (audiomixer.Mixer attribute), 97
VOID (in module uctypes), 286
voltage (microcontroller.Processor attribute), 166

W
wait() (uasyncio.Event method), 280
wait_closed() (uasyncio.Server method), 282
wait_closed() (uasyncio.Stream method), 281
wait_for() (in module uasyncio), 279
wait_for_ms() (in module uasyncio), 279
wake_alarm (in module alarm), 86
watchdog

module, 227
watchdog (in module microcontroller), 165
WATCHDOG (microcontroller.ResetReason attribute), 166
WatchDogMode (class in watchdog), 227
WatchDogTimeout, 227
WatchDogTimer (class in watchdog), 228
WaveFile (class in audiocore), 94
WEP (wifi.AuthMode attribute), 229
width (displayio.Bitmap attribute), 127
width (displayio.Display attribute), 131
width (displayio.EPaperDisplay attribute), 133
width (displayio.OnDiskBitmap attribute), 137
width (displayio.TileGrid attribute), 139
width (framebufferio.FramebufferDisplay attribute), 143
width (is31fl3741.IS31FL3741_FrameBuffer attribute),

153
width (qrio.QRDecoder attribute), 180
width (rgbmatrix.RGBMatrix attribute), 182
width (sdioio.SDCard property), 193
width (vectorio.Rectangle attribute), 226
wifi

module, 228
WPA (wifi.AuthMode attribute), 229
WPA2 (wifi.AuthMode attribute), 229
WPA3 (wifi.AuthMode attribute), 229
wrap_socket() (ssl.SSLContext method), 196
WRITE (_bleio.Characteristic attribute), 63

336 Index

CircuitPython Documentation, Release 7.3.3

write() (_bleio.PacketBuffer method), 68
write() (adafruit_bus_device.i2c_device.I2CDevice

method), 81
write() (bitbangio.SPI method), 105
write() (busio.SPI method), 114
write() (busio.UART method), 117
write() (i2cperipheral.I2CPeripheralRequest method),

151
write() (in module is31fl3741), 154
write() (rp2pio.StateMachine method), 186
write() (terminalio.Terminal method), 203
write() (uasyncio.Stream method), 281
write() (usb.core.Device method), 217
write() (usb_cdc.Serial method), 220
write() (usb_midi.PortOut method), 224
write_bit() (onewireio.OneWire method), 171
WRITE_NO_RESPONSE (_bleio.Characteristic attribute),

63
write_readinto() (bitbangio.SPI method), 105
write_readinto() (busio.SPI method), 115
write_readinto() (rp2pio.StateMachine method), 188
write_then_readinto()

(adafruit_bus_device.i2c_device.I2CDevice
method), 82

write_timeout (usb_cdc.Serial attribute), 219
writeblocks() (sdcardio.SDCard method), 191
writeblocks() (sdioio.SDCard method), 192
writeto() (bitbangio.I2C method), 103
writeto() (busio.I2C method), 112
writeto_then_readfrom() (bitbangio.I2C method),

104
writeto_then_readfrom() (busio.I2C method), 112
writing (rp2pio.StateMachine property), 187

X
x (displayio.Group attribute), 135
x (displayio.TileGrid attribute), 139
x (vectorio.Circle attribute), 225
x (vectorio.Polygon attribute), 226
x (vectorio.Rectangle attribute), 226

Y
y (displayio.Group attribute), 135
y (displayio.TileGrid attribute), 139
y (vectorio.Circle attribute), 225
y (vectorio.Polygon attribute), 226
y (vectorio.Rectangle attribute), 226

Z
ZeroDivisionError, 265
zeros() (in module ulab.numpy), 211
zip()

built-in function, 264

zlib
module, 232

zlib_decompress() (in module zlib), 232

Index 337

	CircuitPython
	Get CircuitPython
	Documentation
	Code Search
	Contributing
	Branding
	Differences from MicroPython
	Behavior
	API
	Modules

	Project Structure
	Core
	Ports
	Boards

	Full Table of Contents
	Core Modules
	Module Support Matrix - Which Modules Are Available on Which Boards
	Modules
	_bleio – Bluetooth Low Energy (BLE) communication
	_eve – Low-level BridgeTek EVE bindings
	_pew – LED matrix driver
	_stage – C-level helpers for animation of sprites on a stage
	adafruit_bus_device – Hardware accelerated external bus access
	adafruit_bus_device.i2c_device – I2C Device Manager
	adafruit_bus_device.spi_device – SPI Device Manager

	adafruit_pixelbuf – A fast RGB(W) pixel buffer library for like NeoPixel and DotStar
	aesio – AES encryption routines
	alarm – Alarms and sleep
	alarm.pin – Trigger an alarm when a pin changes state.
	alarm.time – Trigger an alarm when the specified time is reached.
	alarm.touch – Trigger an alarm when touch is detected.

	analogio – Analog hardware support
	atexit – Atexit Module
	audiobusio – Support for audio input and output over digital buses
	audiocore – Support for audio samples
	audioio – Support for audio output
	audiomixer – Support for audio mixing
	audiomp3 – Support for MP3-compressed audio files
	audiopwmio – Audio output via digital PWM
	bitbangio – Digital protocols implemented by the CPU
	bitmaptools – Collection of bitmap manipulation tools
	bitops – Routines for low-level manipulation of binary data
	board – Board specific pin names
	busio – Hardware accelerated external bus access
	camera – Support for camera input
	canio – CAN bus access
	countio – Support for edge counting
	digitalio – Basic digital pin support
	displayio – Native helpers for driving displays
	dualbank – DUALBANK Module
	espidf
	floppyio – Read flux transition information into the buffer.
	fontio – Core font related data structures
	framebufferio – Native framebuffer display driving
	frequencyio – Support for frequency based protocols
	gamepadshift – Tracks button presses read through a shift register.
	getpass – Getpass Module
	gifio – Access GIF-format images
	gnss – Global Navigation Satellite System
	i2cperipheral – Two wire serial protocol peripheral
	imagecapture – Support for “Parallel capture” interfaces
	ipaddress
	is31fl3741 – Creates an in-memory framebuffer for a IS31FL3741 device.
	keypad – Support for scanning keys and key matrices
	math – mathematical functions
	mdns – Multicast Domain Name Service
	memorymonitor – Memory monitoring helpers
	microcontroller – Pin references and cpu functionality
	msgpack – Pack object in msgpack format
	multiterminal – Manage additional terminal sources
	neopixel_write – Low-level neopixel implementation
	nvm – Non-volatile memory
	onewireio – Low-level bit primitives for Maxim (formerly Dallas Semi) one-wire protocol.
	os – functions that an OS normally provides
	paralleldisplay – Native helpers for driving parallel displays
	ps2io – Support for PS/2 protocol
	pulseio – Support for individual pulse based protocols
	pwmio – Support for PWM based protocols
	qrio – Low-level QR code decoding
	rainbowio
	random – pseudo-random numbers and choices
	rgbmatrix – Low-level routines for bitbanged LED matrices
	rotaryio – Support for reading rotation sensors
	rp2pio – Hardware interface to RP2 series’ programmable IO (PIO) peripheral.
	rtc – Real Time Clock
	samd – SAMD implementation settings
	sdcardio – Interface to an SD card via the SPI bus
	sdioio – Interface to an SD card via the SDIO bus
	sharpdisplay – Support for Sharp Memory Display framebuffers
	socketpool
	ssl
	storage – Storage management
	struct – Manipulation of c-style data
	supervisor – Supervisor settings
	synthio – Support for MIDI synthesis
	terminalio – Displays text in a TileGrid
	time – time and timing related functions
	touchio – Touch related IO
	traceback – Traceback Module
	uheap – Heap size analysis
	ulab – Manipulate numeric data similar to numpy
	ulab.numpy – Numerical approximation methods
	ulab.numpy.carray – Return the real part of the complex argument, which can be either an ndarray, or a scalar.
	ulab.numpy.fft – Frequency-domain functions
	ulab.numpy.linalg
	ulab.scipy – Compatibility layer for scipy
	ulab.scipy.linalg
	ulab.scipy.optimize
	ulab.scipy.signal
	ulab.user – This module should hold arbitrary user-defined functions.

	usb – PyUSB-compatible USB host API
	usb.core – USB Core

	usb_cdc – USB CDC Serial streams
	usb_hid – USB Human Interface Device
	usb_host – USB Host
	usb_midi – MIDI over USB
	ustack – Stack information and analysis
	vectorio – Lightweight 2D shapes for displays
	watchdog – Watchdog Timer
	wifi
	zlib – zlib decompression functionality
	help() – Built-in method to provide helpful information

	Supported Ports
	SAMD21 and SAMD51
	Building
	Debugging
	Port Specific modules

	CircuitPython port to Spresense
	Prerequisites
	Linux
	Windows
	macOS

	Build instructions
	USB connection
	Flash the bootloader
	Flash the circuitpython image
	Accessing the board

	CircuitPython on Espressif SoCs
	Support Status:
	How this port is organized:
	Connecting to the ESP32-C3
	Connecting to the ESP32-S2
	Connecting to the ESP32-S3
	Building and flashing
	Debugging

	LiteX (FPGA)
	Installation

	CircuitPython Port To The NXP i.MX RT10xx Series
	CircuitPython Port To The Nordic Semiconductor nRF52 Series
	Flash
	Segger Targets
	DFU Targets

	RP2040
	Building
	Port Specific modules

	Circuitpython on STM32
	How this port is organized:
	Build instructions
	USB connection
	Flash the bootloader
	Flashing the circuitpython image with DFU-Util
	Accessing the board

	Troubleshooting
	File system issues
	REPL Erase Method
	Erase File Method

	ValueError: Incompatible .mpy file.

	Additional CircuitPython Libraries and Drivers on GitHub
	Adafruit CircuitPython Library Bundle
	CircuitPython Community Library Bundle

	Design Guide
	Start libraries with the cookiecutter
	Module Naming
	Terminology
	Lifetime and ContextManagers
	Verify your device
	Getters/Setters
	Exceptions and asserts
	Design for compatibility with CPython
	Example

	Document inline
	Module description
	Class description
	Documenting Parameters
	param_type
	param_name
	Parameter_description

	Attributes
	Instance attributes
	Property description
	Data descriptor description

	Method description
	Documentation References to other Libraries

	Use BusDevice
	I2C Example
	SPI Example

	Class documentation example template
	Use composition
	Lots of small modules
	Speed second
	Avoid allocations in drivers
	Examples
	struct.pack

	Use of MicroPython const()
	Libraries Examples
	Sensor properties and units
	Adding native modules
	MicroPython compatibility

	Architecture
	Porting
	Step 1: Getting building
	Step 2: Init
	Step 3: REPL

	Adding *io support to other ports
	File layout
	Adding support
	Modifying the build
	Hooking the modules in
	Implementing the Common HAL
	Testing

	MicroPython libraries
	Python standard libraries and micro-libraries
	builtins – builtin functions and exceptions
	Functions and types
	Exceptions
	Constants

	heapq – heap queue algorithm
	Functions

	array – arrays of numeric data
	Classes

	binascii – binary/ASCII conversions
	Functions

	collections – collection and container types
	Classes

	errno – system error codes
	Constants

	gc – control the garbage collector
	Functions

	hashlib – hashing algorithms
	Constructors
	Methods

	io – input/output streams
	Conceptual hierarchy
	Functions
	Classes

	json – JSON encoding and decoding
	Functions

	re – simple regular expressions
	Functions
	Regex objects
	Match objects

	sys – system specific functions
	Functions
	Constants

	uasyncio — asynchronous I/O scheduler
	Core functions
	Additional functions
	class Task
	class Event
	class Lock
	TCP stream connections
	Event Loop

	uctypes – access binary data in a structured way
	Defining structure layout
	Module contents
	Structure descriptors and instantiating structure objects
	Structure objects
	Limitations

	select – wait for events on a set of streams
	Functions
	class Poll
	Methods

	zlib – zlib decompression
	Functions

	Omitted functions in the string library
	CircuitPython/MicroPython-specific libraries
	btree – simple BTree database
	Functions
	Methods
	Constants

	framebuf — frame buffer manipulation
	class FrameBuffer
	Constructors
	Drawing primitive shapes
	Drawing text
	Other methods
	Constants

	micropython – access and control MicroPython internals
	Functions

	Glossary
	CircuitPython
	Get CircuitPython
	Documentation
	Code Search
	Contributing
	Branding
	Differences from MicroPython
	Behavior
	API
	Modules

	Project Structure
	Core
	Ports
	Boards

	Contributing
	Licensing
	Ways to contribute
	Getting started with C
	Developer contacts
	Code guidelines

	Building CircuitPython
	Setup
	Submodules
	Required Python Packages
	mpy-cross

	Building
	Testing
	Debugging
	Code Quality Checks
	Adafruit Community Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Moderation
	Scope
	Attribution

	MicroPython & CircuitPython license information
	WebUSB Serial Support
	What it does
	How to enable
	Implementation Notes
	TODO: This needs to be reworked for dynamic USB descriptors.

	Indices and tables
	Python Module Index
	Index

