Adafruit GPS Library Documentation

Release 1.0

Tony DiCola

Dec 21, 2018

Contents

1 Dependencies 3
2 Usage Example 5
3 Contributing 7
4 Building locally 9
4.1 Sphinx documentation L. e e e e e e e e e e e e e e 9

5 Table of Contents 1
5.1 Simpletest e e e e e e e e e e e e e 11

5.2 adafruift_gpS v v v v i e e e e e e e e e e e e 13
5.2.1 Implementation Notes e 13

6 Indices and tables 15

Python Module Index 17

Adafruit GPS Library Documentation, Release 1.0

GPS parsing module. Can parse simple NMEA data sentences from serial GPS modules to read latitude, longitude,
and more.

Contents 1

https://circuitpython.readthedocs.io/projects/gps/en/latest/
https://discord.gg/nBQh6qu
https://travis-ci.org/adafruit/Adafruit_CircuitPython_GPS

Adafruit GPS Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Dependencies

This driver depends on:
¢ Adafruit CircuitPython

Please ensure all dependencies are available on the CircuitPython filesystem. This is easily achieved by downloading
the Adafruit library and driver bundle.

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

Adafruit GPS Library Documentation, Release 1.0

4 Chapter 1. Dependencies

CHAPTER 2

Usage Example

See examples/simple.py for a demonstration of parsing and printing GPS location.

Adafruit GPS Library Documentation, Release 1.0

6 Chapter 2. Usage Example

CHAPTER 3

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

https://github.com/adafruit/Adafruit_CircuitPython_gps/blob/master/CODE_OF_CONDUCT.md

Adafruit GPS Library Documentation, Release 1.0

8 Chapter 3. Contributing

CHAPTER 4

Building locally

To build this library locally you’ll need to install the circuitpython-build-tools package.

python3 -m venv .env
source .env/bin/activate
pip install circuitpython-build-tools

Once installed, make sure you are in the virtual environment:

source .env/bin/activate

Then run the build:

circuitpython-build-bundles —--filename_prefix adafruit-circuitpython-gps —--library__
—location

4.1 Sphinx documentation

Sphinx is used to build the documentation based on rST files and comments in the code. First, install dependencies
(feel free to reuse the virtual environment from above):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-rtd-theme

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build/html

This will output the documentation to docs/_build/html. Open the index.html in your browser to view them. It
will also (due to -W) error out on any warning like Travis will. This is a good way to locally verify it will pass.

https://github.com/adafruit/circuitpython-build-tools

Adafruit GPS Library Documentation, Release 1.0

10 Chapter 4. Building locally

20

21

22

23

24

25

26

27

CHAPTER B

Table of Contents

5.1 Simple test

Ensure your device works with this simple test.

Listing 1: examples/gps_simpletest.py

Simple GPS module demonstration.

Will wait for a fix and print a message every second with the current location
and other details.

import time

import board

import busio

import adafruit_gps

Define RX and TX pins for the board's serial port connected to the GPS.
These are the defaults you should use for the GPS FeatherWing.

For other boards set RX = GPS module TX, and TX = GPS module RX pins.
RX = board.RX

TX = board.TX

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
uart = busio.UART (TX, RX, baudrate=9600, timeout=3000)

for a computer, use the pyserial library for uart access
#import serial
#uart = serial.Serial ("/dev/ttyUSB0O", baudrate=9600, timeout=3000)

Create a GPS module instance.
gps = adafruit_gps.GPS(uart, debug=False)

(continues on next page)

11

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

Initialize the GPS module by changing what data it sends and at what rate.
These are NMEA extensions for PMTK 314 SET NMEA OUTPUT and

PMTK_220_SET_NMEA UPDATERATE but you can send anything from here to adjust
the GPS module behavior:

https://cdn-shop.adafruit.com/datasheets/PMTK_All.pdf

Turn on the basic GGA and RMC info (what you typically want)
gps.send_command (b'PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
Turn on just minimum info (RMC only, location):

#gps.send_command (b'pPMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
Turn off everything:

#gps.send_command (b 'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
Tuen on everything (not all of it is parsed!)

#gps.send_command (b 'pPMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0")

Set update rate to once a second (lhz) which is what you typically want.
gps.send_command (b'PMTK220,1000")

Or decrease to once every two seconds by doubling the millisecond value.

Be sure to also increase your UART timeout above!
#gps.send_command (b 'PMTK220,2000")

You can also speed up the rate, but don't go too fast or else you can lose
data during parsing. This would be twice a second (2hz, 500ms delay) :
#gps.send_command (b'PMTK220,500")

Main loop runs forever printing the location, etc. every second.
last_print = time.monotonic()
while True:
Make sure to call gps.update() every loop iteration and at least twice
as fast as data comes from the GPS unit (usually every second).
This returns a bool that's true if it parsed new data (you can ignore it
though if you don't care and instead look at the has_fix property).
gps.update ()
Every second print out current location details 1f there's a fix.
current = time.monotonic ()
if current - last_print >= 1.0:
last_print = current
if not gps.has_fix:
Try again if we don't have a fix yet.
print ('Waiting for fix..."')
continue
We have a fix! (gps.has_fix is true)
Print out details about the fix like location, date, etc.
print ('=' % 40) # Print a separator line.
print ('Fix timestamp: {}/{}/{} {(:02}:{:02}:{:02}".format (
gps.timestamp_utc.tm_mon, # Grab parts of the time from the
gps.timestamp_utc.tm_mday, # struct_time object that holds
gps.timestamp_utc.tm_year, # the fix time. Note you might
gps.timestamp_utc.tm_hour, # not get all data like year, day,
gps.timestamp_utc.tm_min, # month!
gps.timestamp_utc.tm_sec))
print ('Latitude: {0:.6f)} degrees'.format (gps.latitude))
print ('Longitude: {0:.6f} degrees'.format (gps.longitude))
print ('Fix quality: {}'.format (gps.fix_quality))
Some attributes beyond latitude, longitude and timestamp are optional
and might not be present. Check if they're None before trying to use!
if gps.satellites is not None:
print ('# satellites: {}'.format (gps.satellites))

(continues on next page)

12 Chapter 5. Table of Contents

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

if gps.altitude_m is not None:

print ('Altitude: meters'.format (gps.altitude_m))
if gps.track_angle_deg is not None:
print ('Speed: knots'.format (gps.speed_knots))
if gps.track_angle_deg is not None:
print ('Track angle: degrees'.format (gps.track_angle_deqg))
if gps.horizontal_dilution is not None:
print ('Horizontal dilution: '.format (gps.horizontal_dilution))
if gps.height_geoid is not None:
print ('Height geo ID: meters'.format (gps.height_geoid))

5.2 adafruit_gps

GPS parsing module. Can parse simple NMEA data sentences from serial GPS modules to read latitude, longitude,
and more.

* Author(s): Tony DiCola

5.2.1 Implementation Notes

Hardware:

* Adafruit Ultimate GPS Breakout

¢ Adafruit Ultimate GPS FeatherWing
Software and Dependencies:

* Adafruit CircuitPython firmware for the ESP8622 and MO-based boards: https://github.com/adafruit/
circuitpython/releases

class adafruit_gps.GPS (uart, debug=False)
GPS parsing module. Can parse simple NMEA data sentences from serial GPS modules to read latitude, longi-
tude, and more.

datetime
Return struct_time object to feed rtc.set_time_source() function

has_ fix
True if a current fix for location information is available.

send_command (command, add_checksum=True)
Send a command string to the GPS. If add_checksum is True (the default) a NMEA checksum will auto-
matically be computed and added. Note you should NOT add the leading $ and trailing * to the command
as they will automatically be added!

update ()
Check for updated data from the GPS module and process it accordingly. Returns True if new data was
processed, and False if nothing new was received.

5.2. adafruit_gps 13

https://www.adafruit.com/product/746
https://www.adafruit.com/product/3133
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython/releases

Adafruit GPS Library Documentation, Release 1.0

14 Chapter 5. Table of Contents

CHAPTER O

Indices and tables

* genindex
* modindex

e search

15

Adafruit GPS Library Documentation, Release 1.0

16 Chapter 6. Indices and tables

Python Module Index

a
adafruit_gps, 13

17

Adafruit GPS Library Documentation, Release 1.0

18 Python Module Index

Index

A

adafruit_gps (module), 13

D

datetime (adafruit_gps.GPS attribute), 13

G

GPS (class in adafruit_gps), 13

H

has_fix (adafruit_gps.GPS attribute), 13

S

send_command() (adafruit_gps.GPS method), 13

U

update() (adafruit_gps.GPS method), 13

19

	Dependencies
	Usage Example
	Contributing
	Building locally
	Sphinx documentation

	Table of Contents
	Simple test
	adafruit_gps
	Implementation Notes

	Indices and tables
	Python Module Index

