
Adafruit GPS Library Documentation
Release 1.0

Tony DiCola, James Carr

Oct 05, 2021

Contents

1 Dependencies 3

2 Installing from PyPI 5

3 Usage Example 7

4 Contributing 9

5 Documentation 11

6 Table of Contents 13
6.1 Communicating with the GPS . 13

6.1.1 Sentence format . 13
6.1.2 Checksums . 14
6.1.3 Initial Configuration . 15
6.1.4 Configuring the GPS . 15
6.1.5 Poll for data . 16

6.2 Selected Data Types . 16
6.2.1 RMC - Recommended Minimum Navigation Information 16
6.2.2 GGA - Global Positioning System Fix Data . 16

6.3 Simple test . 17
6.4 Echo test . 19
6.5 Time source . 21
6.6 Data logging . 22
6.7 Satellite fix . 23
6.8 adafruit_gps . 26

6.8.1 Implementation Notes . 26

7 Indices and tables 29

Python Module Index 31

Index 33

i

ii

Adafruit GPS Library Documentation, Release 1.0

GPS parsing module. Can send commands to, and parse simple NMEA data sentences from serial and I2C GPS
modules to read latitude, longitude, and more.

Contents 1

https://circuitpython.readthedocs.io/projects/gps/en/latest/
https://adafru.it/discord
https://github.com/adafruit/Adafruit_CircuitPython_GPS/actions/

Adafruit GPS Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Dependencies

This driver depends on:

• Adafruit CircuitPython

Please ensure all dependencies are available on the CircuitPython filesystem. This is easily achieved by downloading
the Adafruit library and driver bundle.

3

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

Adafruit GPS Library Documentation, Release 1.0

4 Chapter 1. Dependencies

CHAPTER 2

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from PyPI. To install for
current user:

pip3 install adafruit-circuitpython-gps

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-gps

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-gps

5

https://pypi.org/project/adafruit-circuitpython-gps/

Adafruit GPS Library Documentation, Release 1.0

6 Chapter 2. Installing from PyPI

CHAPTER 3

Usage Example

See examples/gps_simpletest.py for a demonstration of parsing and printing GPS location.

Important: Feather boards and many other circuitpython boards will round to two decimal places like this:

>>> float('1234.5678')
1234.57

This isn’t ideal for GPS data as this lowers the accuracy from 0.1m to 11m.

This can be fixed by using string formatting when the GPS data is output.

An implementation of this can be found in examples/gps_simpletest.py

import time
import board
import busio

import adafruit_gps

RX = board.RX
TX = board.TX

uart = busio.UART(TX, RX, baudrate=9600, timeout=30)

gps = adafruit_gps.GPS(uart, debug=False)

gps.send_command(b'PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

gps.send_command(b'PMTK220,1000')

last_print = time.monotonic()
while True:

gps.update()

(continues on next page)

7

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

current = time.monotonic()
if current - last_print >= 1.0:

last_print = current
if not gps.has_fix:

print('Waiting for fix...')
continue

print('=' * 40) # Print a separator line.
print('Latitude: {0:.6f} degrees'.format(gps.latitude))
print('Longitude: {0:.6f} degrees'.format(gps.longitude))

These two lines are the lines that actually solve the issue:

print('Latitude: {0:.6f} degrees'.format(gps.latitude))
print('Longitude: {0:.6f} degrees'.format(gps.longitude))

Note: Sending multiple PMTK314 packets with gps.send_command() will not work unless there is a substantial
amount of time in-between each time gps.send_command() is called. A time.sleep() of 1 second or more
should fix this.

8 Chapter 3. Usage Example

CHAPTER 4

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

9

https://github.com/adafruit/Adafruit_CircuitPython_gps/blob/main/CODE_OF_CONDUCT.md

Adafruit GPS Library Documentation, Release 1.0

10 Chapter 4. Contributing

CHAPTER 5

Documentation

For information on building library documentation, please check out this guide.

11

https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1

Adafruit GPS Library Documentation, Release 1.0

12 Chapter 5. Documentation

CHAPTER 6

Table of Contents

6.1 Communicating with the GPS

The code communicates with the GPS by sending and receiving specially formatted sentences. The format used is the
NMEA 0183 protocol specified by the National Marine Electronics Association. This was designed for boat navigation
and control systems and is widely used by GPSs.

In general, you configure the device to send the sentences that you want at the frequency you need and then receive a
flow of GPS update messages.

Sentences received from the GPS module use the same format, irrespective of the manufacturer. Sentences sent to the
GPS module to control it, and answers to these commands, are proprietary to the manufacturer.

NOTE: All of the example commands used in this documentation, and the examples folder, are for the MediaTek
333X GPS chips used in Adafruit products. Make sure to check the datasheet for your GPS chip if it is different.

6.1.1 Sentence format

$TAG[,DATA[,DATA. . .]]*hh<CR><LF>

• ‘$’ is the opening delimiter

• TAG is the tag describing the type of message.

– The tag for a proprietary (chipset specific) message is composed of

* ‘P’ for proprietary.

* ‘ABC’, a 3 letter code for the manufacturer, eg. ‘MTK’ for MediaTek.

* ‘CODE’, a manufacturer specified code for the command or answer. Note: This can be made up of
letters and numbers and there is no required length.

‘PMTK220’ is the Mediatek command for setting the update rate.

Note: not all commands have an answer counterpart

13

Adafruit GPS Library Documentation, Release 1.0

– The tag for a received data sentence is of the form TTDDD, where:

* TT is the talker sending the data. The list of talkers is large but we are only interested in ones starting
with a ‘G’:

· GA - Galileo (Europe)

· GB - BeiDou (China)

· GI - NavIC (India)

· GL - GLONASS (Russia)

· GP - GPS (US)

· GQ - QZSS (Japan)

· GN - GNSS, a combination of the above

* DDD is the data type of the sentence, this determines how to decode it. Again, the list of data types is
long but we are only interested in a few:

· RMC - Recommended Minimum Navigation Information

· GLL - Geographic Position - Latitude/Longitude

· GGA - Global Positioning System Fix Data

· VTG - Track made good and Ground speed (not currently parsed)

· ZDA - Time & Date - UTC, day, month, year and local time zone (not currently parsed)

· GSA - GPS DOP and active satellites

· GSV - Satellites in view

· GRS - GPS Range Residuals (not currently parsed)

· GST - GPS Pseudorange Noise Statistics (not currently parsed)

• DATA is separated from the TAG by a comma and is a comma separated list of data. Proprietary commands,
and answers, will specify on their datasheet what the list of data is. The normal sentences generated by GPS
modules are specified by NMEA. An unofficial list is here.

• ‘*’ is the end of data delimiter.

• hh is the 1-byte checksum of all characters between ‘$’ and ‘*’ in hexadecimal.

• <CR><LF> is the mandatory sentence terminator

6.1.2 Checksums

When sending commands with the send_command() method it will add the necessary delimiters and calculate the
checksum for you, eg.

gps.send_command(b'PMTK220,1000')

When receiving answers or data from the GPS module, if you use the update() method to poll the device it will
reject any sentences with an invalid checksum and then try to parse the data. However, you can choose to manually
pull data with the read() or readline() which will do no parsing or checksum validation.

14 Chapter 6. Table of Contents

https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)
https://gpsd.gitlab.io/gpsd/NMEA.html

Adafruit GPS Library Documentation, Release 1.0

6.1.3 Initial Configuration

import board
import busio
import adafruit_gps

USE_UART = True # Change this to False to connect via I2C

if USE_UART:
Create a serial connection for the GPS connection.
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

for a computer, use the pyserial library for uart access
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

Create a GPS module instance.
gps = adafruit_gps.GPS(uart, debug=False) # Use UART/pyserial

else:
If using I2C, we'll create an I2C interface to talk to using default pins
i2c = board.I2C()

Create a GPS module instance.
gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False) # Use I2C interface

6.1.4 Configuring the GPS

Set update rate to 1000 milliseconds (1Hz)
gps.send_command(b"PMTK220,1000")

Ask for specific data to be sent.
A B C D E F G H I
gps.send_command(b'PMTK314,1,1,5,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0')

A - send GLL sentences
B - send RMC sentences
C - send VTG sentences
D - send GGA sentences
E - send GSA sentences
F - send GSV sentences
G - send GRS sentences
H - send GST sentences
I - send ZDA sentences

The number is how often to send the sentence compared to the update frequency.
If the update frequency is 500ms and the number is 5, it will send that message
every 2.5 seconds.

Note: Be aware that some data types send multiple sentences per update. So if you ask for 5 different types of data
at 1Hz, you need to be able to handle at least 10 sentences per second. If the data is not read fast enough, the internal
buffer and backlog behaviour is not specified.

6.1. Communicating with the GPS 15

Adafruit GPS Library Documentation, Release 1.0

6.1.5 Poll for data

while True:
if gps.update():

A valid sentence was received - do something
if gps.has_fix:

print(f"{gps.latitude:.6f},{gps.longitude:.6f}")
else:

print("Waiting for a fix...")
else:

No valid sentence was received, wait a moment.
time.sleep(100)

The update() call takes care of reading data from the device and parsing it into usable data. This can then be
accessed using the property accessors, eg. has_fix, datetime, latitude, longitude etc.

6.2 Selected Data Types

6.2.1 RMC - Recommended Minimum Navigation Information

1 2 3 4 5 6 7 8 9 10 11 12
| | | | | | | | | | | |

$--RMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,x.x,x.x,xxxx,x.x,a*hh
$GNRMC,001031.00,A,4404.13993,N,12118.86023,W,0.146,,100117,,,A*7B

1. Time (UTC)

2. Status, A = Valid, V = Warning

3. Latitude

4. N or S

5. Longitude

6. E or W

7. Speed over ground, knots

8. Track made good, degrees true

9. Date, ddmmyy

10. Magnetic Variation, degrees

11. E or W

12. FAA mode indicator (NMEA 2.3 and later)

13. Checksum

6.2.2 GGA - Global Positioning System Fix Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| | | | | | | | | | | | | | |

$--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh
$GNGGA,001043.00,4404.14036,N,12118.85961,W,1,12,0.98,1113.0,M,-21.3,M,,*47

16 Chapter 6. Table of Contents

Adafruit GPS Library Documentation, Release 1.0

1. Time (UTC)

2. Latitude

3. N or S (North or South)

4. Longitude

5. E or W (East or West)

6. GPS Quality Indicator:

0. Fix not available

1. GPS fix

2. Differential GPS fix

3. PPS fix (values above 2 are NMEA 0183 v2.3 features)

4. Real Time Kinematic

5. Float RTK

6. Estimated (dead reckoning)

7. Manual input mode

8. Simulation mode

7. Number of satellites in view, 00 - 12

8. Horizontal dilution of precision

9. Antenna altitude above/below mean-sea-level (geoid)

10. Units of antenna altitude, meters

11. Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid), “-” means
mean-sea-level below ellipsoid

12. Units of geoidal separation, meters

13. Age of differential GPS data, time in seconds since last SC104 type 1 or 9 update, empty field when DGPS is
not used

14. Differential reference station ID, 0000-1023

15. Checksum

Info about NMEA taken from here (2001). and here (2021)

6.3 Simple test

Ensure your device works with this simple test.

Listing 1: examples/gps_simpletest.py

1 # SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

4 # Simple GPS module demonstration.
5 # Will wait for a fix and print a message every second with the current location
6 # and other details.

(continues on next page)

6.3. Simple test 17

https://www.tronico.fi/OH6NT/docs/NMEA0183.pdf
https://gpsd.gitlab.io/gpsd/NMEA.html

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

7 import time
8 import board
9 import busio

10

11 import adafruit_gps
12

13 # Create a serial connection for the GPS connection using default speed and
14 # a slightly higher timeout (GPS modules typically update once a second).
15 # These are the defaults you should use for the GPS FeatherWing.
16 # For other boards set RX = GPS module TX, and TX = GPS module RX pins.
17 uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)
18

19 # for a computer, use the pyserial library for uart access
20 # import serial
21 # uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)
22

23 # If using I2C, we'll create an I2C interface to talk to using default pins
24 # i2c = board.I2C()
25

26 # Create a GPS module instance.
27 gps = adafruit_gps.GPS(uart, debug=False) # Use UART/pyserial
28 # gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False) # Use I2C interface
29

30 # Initialize the GPS module by changing what data it sends and at what rate.
31 # These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
32 # PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
33 # the GPS module behavior:
34 # https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf
35

36 # Turn on the basic GGA and RMC info (what you typically want)
37 gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
38 # Turn on just minimum info (RMC only, location):
39 # gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
40 # Turn off everything:
41 # gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
42 # Turn on everything (not all of it is parsed!)
43 # gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')
44

45 # Set update rate to once a second (1hz) which is what you typically want.
46 gps.send_command(b"PMTK220,1000")
47 # Or decrease to once every two seconds by doubling the millisecond value.
48 # Be sure to also increase your UART timeout above!
49 # gps.send_command(b'PMTK220,2000')
50 # You can also speed up the rate, but don't go too fast or else you can lose
51 # data during parsing. This would be twice a second (2hz, 500ms delay):
52 # gps.send_command(b'PMTK220,500')
53

54 # Main loop runs forever printing the location, etc. every second.
55 last_print = time.monotonic()
56 while True:
57 # Make sure to call gps.update() every loop iteration and at least twice
58 # as fast as data comes from the GPS unit (usually every second).
59 # This returns a bool that's true if it parsed new data (you can ignore it
60 # though if you don't care and instead look at the has_fix property).
61 gps.update()
62 # Every second print out current location details if there's a fix.
63 current = time.monotonic()

(continues on next page)

18 Chapter 6. Table of Contents

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

64 if current - last_print >= 1.0:
65 last_print = current
66 if not gps.has_fix:
67 # Try again if we don't have a fix yet.
68 print("Waiting for fix...")
69 continue
70 # We have a fix! (gps.has_fix is true)
71 # Print out details about the fix like location, date, etc.
72 print("=" * 40) # Print a separator line.
73 print(
74 "Fix timestamp: {}/{}/{} {:02}:{:02}:{:02}".format(
75 gps.timestamp_utc.tm_mon, # Grab parts of the time from the
76 gps.timestamp_utc.tm_mday, # struct_time object that holds
77 gps.timestamp_utc.tm_year, # the fix time. Note you might
78 gps.timestamp_utc.tm_hour, # not get all data like year, day,
79 gps.timestamp_utc.tm_min, # month!
80 gps.timestamp_utc.tm_sec,
81)
82)
83 print("Latitude: {0:.6f} degrees".format(gps.latitude))
84 print("Longitude: {0:.6f} degrees".format(gps.longitude))
85 print("Fix quality: {}".format(gps.fix_quality))
86 # Some attributes beyond latitude, longitude and timestamp are optional
87 # and might not be present. Check if they're None before trying to use!
88 if gps.satellites is not None:
89 print("# satellites: {}".format(gps.satellites))
90 if gps.altitude_m is not None:
91 print("Altitude: {} meters".format(gps.altitude_m))
92 if gps.speed_knots is not None:
93 print("Speed: {} knots".format(gps.speed_knots))
94 if gps.track_angle_deg is not None:
95 print("Track angle: {} degrees".format(gps.track_angle_deg))
96 if gps.horizontal_dilution is not None:
97 print("Horizontal dilution: {}".format(gps.horizontal_dilution))
98 if gps.height_geoid is not None:
99 print("Height geoid: {} meters".format(gps.height_geoid))

6.4 Echo test

Simple GPS module demonstration. This will print NMEA sentences received from the GPS, great for testing connec-
tion. This uses the GPS to send some commands, then reads directly from the GPS.

Listing 2: examples/gps_echotest.py

1 # SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

4 # Simple GPS module demonstration.
5 # Will print NMEA sentences received from the GPS, great for testing connection
6 # Uses the GPS to send some commands, then reads directly from the GPS
7 import time
8 import board
9 import busio

10

(continues on next page)

6.4. Echo test 19

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

11 import adafruit_gps
12

13 # Create a serial connection for the GPS connection using default speed and
14 # a slightly higher timeout (GPS modules typically update once a second).
15 # These are the defaults you should use for the GPS FeatherWing.
16 # For other boards set RX = GPS module TX, and TX = GPS module RX pins.
17 uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)
18

19 # for a computer, use the pyserial library for uart access
20 # import serial
21 # uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)
22

23 # If using I2C, we'll create an I2C interface to talk to using default pins
24 # i2c = board.I2C()
25

26 # Create a GPS module instance.
27 gps = adafruit_gps.GPS(uart) # Use UART/pyserial
28 # gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface
29

30 # Initialize the GPS module by changing what data it sends and at what rate.
31 # These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
32 # PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
33 # the GPS module behavior:
34 # https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf
35

36 # Turn on the basic GGA and RMC info (what you typically want)
37 gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
38 # Turn on just minimum info (RMC only, location):
39 # gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
40 # Turn off everything:
41 # gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
42 # Tuen on everything (not all of it is parsed!)
43 # gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')
44

45 # Set update rate to once a second (1hz) which is what you typically want.
46 gps.send_command(b"PMTK220,1000")
47 # Or decrease to once every two seconds by doubling the millisecond value.
48 # Be sure to also increase your UART timeout above!
49 # gps.send_command(b'PMTK220,2000')
50 # You can also speed up the rate, but don't go too fast or else you can lose
51 # data during parsing. This would be twice a second (2hz, 500ms delay):
52 # gps.send_command(b'PMTK220,500')
53

54 # Main loop runs forever printing data as it comes in
55 timestamp = time.monotonic()
56 while True:
57 data = gps.read(32) # read up to 32 bytes
58 # print(data) # this is a bytearray type
59

60 if data is not None:
61 # convert bytearray to string
62 data_string = "".join([chr(b) for b in data])
63 print(data_string, end="")
64

65 if time.monotonic() - timestamp > 5:
66 # every 5 seconds...
67 gps.send_command(b"PMTK605") # request firmware version

(continues on next page)

20 Chapter 6. Table of Contents

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

68 timestamp = time.monotonic()

6.5 Time source

Simple script using GPS timestamps as RTC time source. The GPS timestamps are available without a full location
fix if a single satellite can be seen. The GPS unit will keep the track of time while there is power source (i.e. a coin
cell battery.)

Listing 3: examples/gps_time_source.py

1 # SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

4 # Simple script using GPS timestamps as RTC time source
5 # The GPS timestamps are available without a fix and keep the track of
6 # time while there is powersource (ie coin cell battery)
7

8 import time
9 import board

10 import busio
11 import rtc
12 import adafruit_gps
13

14 uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)
15 # i2c = busio.I2C(board.SCL, board.SDA)
16

17 gps = adafruit_gps.GPS(uart, debug=False)
18 # gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False) # Use I2C interface
19

20 gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
21 gps.send_command(b"PMTK220,1000")
22

23 print("Set GPS as time source")
24 rtc.set_time_source(gps)
25 the_rtc = rtc.RTC()
26

27

28 def _format_datetime(datetime):
29 return "{:02}/{:02}/{} {:02}:{:02}:{:02}".format(
30 datetime.tm_mon,
31 datetime.tm_mday,
32 datetime.tm_year,
33 datetime.tm_hour,
34 datetime.tm_min,
35 datetime.tm_sec,
36)
37

38

39 last_print = time.monotonic()
40 while True:
41

42 gps.update()
43 # Every second print out current time from GPS, RTC and time.localtime()
44 current = time.monotonic()

(continues on next page)

6.5. Time source 21

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

45 if current - last_print >= 1.0:
46 last_print = current
47 if not gps.timestamp_utc:
48 print("No time data from GPS yet")
49 continue
50 # Time & date from GPS informations
51 print("Fix timestamp: {}".format(_format_datetime(gps.timestamp_utc)))
52

53 # Time & date from internal RTC
54 print("RTC timestamp: {}".format(_format_datetime(the_rtc.datetime)))
55

56 # Time & date from time.localtime() function
57 local_time = time.localtime()
58

59 print("Local time: {}".format(_format_datetime(local_time)))

6.6 Data logging

Simple GPS datalogging demonstration. This example uses the GPS library and to read raw NMEA sentences over
I2C or UART from the GPS unit and dumps them to a file on an SD card (recommended), microcontroller internal
storage (be careful as only a few kilobytes are available), or to a filesystem.

If you are using a microcontroller, before writing to internal storage you MUST carefully follow the steps in this guide
to enable writes to the internal filesystem: Writing to the filesystem

Listing 4: examples/gps_datalogging.py

1 # SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

4 # Simple GPS datalogging demonstration.
5 # This example uses the GPS library and to read raw NMEA sentences
6 # over I2C or UART from the GPS unit and dumps them to a file on an SD card
7 # (recommended), microcontroller internal storage (be careful as only a few
8 # kilobytes are available), or to a filesystem.
9 # If you are using a microcontroller, before writing to internal storage you

10 # MUST carefully follow the steps in this guide to enable writes to the
11 # internal filesystem:
12 # https://learn.adafruit.com/adafruit-ultimate-gps-featherwing/circuitpython-library
13 import board
14 import busio
15 import adafruit_gps
16

17 # Path to the file to log GPS data. By default this will be appended to
18 # which means new lines are added at the end and all old data is kept.
19 # Change this path to point at internal storage (like '/gps.txt') or SD
20 # card mounted storage ('/sd/gps.txt') as desired.
21 LOG_FILE = "gps.txt" # Example for writing to internal path gps.txt
22

23 # File more for opening the log file. Mode 'ab' means append or add new lines
24 # to the end of the file rather than erasing it and starting over. If you'd
25 # like to erase the file and start clean each time use the value 'wb' instead.
26 LOG_MODE = "ab"
27

(continues on next page)

22 Chapter 6. Table of Contents

https://learn.adafruit.com/cpu-temperature-logging-with-circuit-python/writing-to-the-filesystem

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

28 # If writing to SD card on a microcontroller customize and uncomment these
29 # lines to import the necessary library and initialize the SD card:
30 # NOT for use with a single board computer like Raspberry Pi!
31 """
32 import adafruit_sdcard
33 import digitalio
34 import storage
35

36 SD_CS_PIN = board.D10 # CS for SD card using Adalogger Featherwing
37 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
38 sd_cs = digitalio.DigitalInOut(SD_CS_PIN)
39 sdcard = adafruit_sdcard.SDCard(spi, sd_cs)
40 vfs = storage.VfsFat(sdcard)
41 storage.mount(vfs, '/sd') # Mount SD card under '/sd' path in filesystem.
42 LOG_FILE = '/sd/gps.txt' # Example for writing to SD card path /sd/gps.txt
43 """
44

45 # Create a serial connection for the GPS connection using default speed and
46 # a slightly higher timeout (GPS modules typically update once a second).
47 # These are the defaults you should use for the GPS FeatherWing.
48 # For other boards set RX = GPS module TX, and TX = GPS module RX pins.
49 uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)
50

51 # If using a USB/Serial converter, use pyserial and update the serial
52 # port name to match the serial connection for the GPS!
53 # import serial
54 # uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)
55

56 # If using I2C, we'll create an I2C interface to talk to using default pins
57 # i2c = board.I2C()
58

59 # Create a GPS module instance.
60 gps = adafruit_gps.GPS(uart) # Use UART/pyserial
61 # gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface
62

63 # Main loop just reads data from the GPS module and writes it back out to
64 # the output file while also printing to serial output.
65 with open(LOG_FILE, LOG_MODE) as outfile:
66 while True:
67 sentence = gps.readline()
68 if not sentence:
69 continue
70 print(str(sentence, "ascii").strip())
71 outfile.write(sentence)
72 outfile.flush()

6.7 Satellite fix

This example uses GSA and GSV sentences from the GPS device to report on the quality of the received data from the
satellites.

• GSA - DOP(Dilution of Precision) and active satellites

• GSV - Satellites in view

6.7. Satellite fix 23

Adafruit GPS Library Documentation, Release 1.0

Listing 5: examples/gps_satellitefix.py

1 # SPDX-FileCopyrightText: 2021 lesamouraipourpre
2 # SPDX-License-Identifier: MIT
3

4 # This example uses GSA and GSV sentences from the GPS device to report on the
5 # quality of the received data from the satellites.
6 # * GSA - DOP(Dilution of Precision) and active satellites
7 # * GSV - Satellites in view
8

9 import time
10 import board
11

12 import adafruit_gps
13

14 # Create a serial connection for the GPS connection using default speed and
15 # a slightly higher timeout (GPS modules typically update once a second).
16 # These are the defaults you should use for the GPS FeatherWing.
17 # For other boards set RX = GPS module TX, and TX = GPS module RX pins.
18 # uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)
19

20 # for a computer, use the pyserial library for uart access
21 # import serial
22 # uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)
23

24 # If using I2C, we'll create an I2C interface to talk to using default pins
25 i2c = board.I2C()
26

27 # Create a GPS module instance.
28 # gps = adafruit_gps.GPS(uart, debug=False) # Use UART/pyserial
29 gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False) # Use I2C interface
30

31 # Initialize the GPS module by changing what data it sends and at what rate.
32 # These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
33 # PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
34 # the GPS module behavior:
35 # https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf
36

37 # Turn on everything (not all of it is parsed!)
38 gps.send_command(b"PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0")
39

40 # Set update rate to once a second (1hz) which is what you typically want.
41 gps.send_command(b"PMTK220,1000")
42 # Or decrease to once every two seconds by doubling the millisecond value.
43 # Be sure to also increase your UART timeout above!
44 # gps.send_command(b'PMTK220,2000')
45 # You can also speed up the rate, but don't go too fast or else you can lose
46 # data during parsing. This would be twice a second (2hz, 500ms delay):
47 # gps.send_command(b'PMTK220,500')
48

49

50 def format_dop(dop):
51 # https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)
52 if dop > 20:
53 msg = "Poor"
54 elif dop > 10:
55 msg = "Fair"

(continues on next page)

24 Chapter 6. Table of Contents

Adafruit GPS Library Documentation, Release 1.0

(continued from previous page)

56 elif dop > 5:
57 msg = "Moderate"
58 elif dop > 2:
59 msg = "Good"
60 elif dop > 1:
61 msg = "Excellent"
62 else:
63 msg = "Ideal"
64 return f"{dop} - {msg}"
65

66

67 talkers = {
68 "GA": "Galileo",
69 "GB": "BeiDou",
70 "GI": "NavIC",
71 "GL": "GLONASS",
72 "GP": "GPS",
73 "GQ": "QZSS",
74 "GN": "GNSS",
75 }
76

77 # Main loop runs forever printing the location, etc. every second.
78 last_print = time.monotonic()
79 while True:
80 # Make sure to call gps.update() every loop iteration and at least twice
81 # as fast as data comes from the GPS unit (usually every second).
82 # This returns a bool that's true if it parsed new data (you can ignore it
83 # though if you don't care and instead look at the has_fix property).
84 if not gps.update() or not gps.has_fix:
85 time.sleep(0.1)
86 continue
87

88 if gps.nmea_sentence[3:6] == "GSA":
89 print(f"{gps.latitude:.6f}, {gps.longitude:.6f} {gps.altitude_m}m")
90 print(f"2D Fix: {gps.has_fix} 3D Fix: {gps.has_3d_fix}")
91 print(f" PDOP (Position Dilution of Precision): {format_dop(gps.pdop)}")
92 print(f" HDOP (Horizontal Dilution of Precision): {format_dop(gps.hdop)}")
93 print(f" VDOP (Vertical Dilution of Precision): {format_dop(gps.vdop)}")
94 print("Satellites used for fix:")
95 for s in gps.sat_prns:
96 talker = talkers[s[0:2]]
97 number = s[2:]
98 print(f" {talker}-{number} ", end="")
99 if gps.sats is None:

100 print("- no info")
101 else:
102 try:
103 sat = gps.sats[s]
104 if sat is None:
105 print("- no info")
106 else:
107 print(f"Elevation:{sat[1]}* Azimuth:{sat[2]}* SNR:{sat[3]}dB")
108 except KeyError:
109 print("- no info")
110 print()

6.7. Satellite fix 25

Adafruit GPS Library Documentation, Release 1.0

6.8 adafruit_gps

GPS parsing module. Can parse simple NMEA data sentences from serial GPS modules to read latitude, longitude,
and more.

• Author(s): Tony DiCola, James Carr

6.8.1 Implementation Notes

Hardware:

• Adafruit Ultimate GPS Breakout

• Adafruit Ultimate GPS FeatherWing

Software and Dependencies:

• Adafruit CircuitPython firmware for the ESP8622 and M0-based boards: https://github.com/adafruit/
circuitpython/releases

class adafruit_gps.GPS(uart, debug=False)
GPS parsing module. Can parse simple NMEA data sentences from serial GPS modules to read latitude, longi-
tude, and more.

datetime
Return struct_time object to feed rtc.set_time_source() function

has_3d_fix
Returns true if there is a 3d fix available. use has_fix to determine if a 2d fix is available, passing it the
same data

has_fix
True if a current fix for location information is available.

in_waiting
Returns number of bytes available in UART read buffer

nmea_sentence
Return raw_sentence which is the raw NMEA sentence read from the GPS

read(num_bytes)
Read up to num_bytes of data from the GPS directly, without parsing. Returns a bytearray with up to
num_bytes or None if nothing was read

readline()
Returns a newline terminated bytearray, must have timeout set for the underlying UART or this will block
forever!

send_command(command, add_checksum=True)
Send a command string to the GPS. If add_checksum is True (the default) a NMEA checksum will auto-
matically be computed and added. Note you should NOT add the leading $ and trailing * to the command
as they will automatically be added!

update()
Check for updated data from the GPS module and process it accordingly. Returns True if new data was
processed, and False if nothing new was received.

write(bytestr)
Write a bytestring data to the GPS directly, without parsing or checksums

26 Chapter 6. Table of Contents

https://www.adafruit.com/product/746
https://www.adafruit.com/product/3133
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython/releases

Adafruit GPS Library Documentation, Release 1.0

class adafruit_gps.GPS_GtopI2C(i2c_bus, *, address=16, debug=False, timeout=5)
GTop-compatible I2C GPS parsing module. Can parse simple NMEA data sentences from an I2C-capable GPS
module to read latitude, longitude, and more.

in_waiting
Returns number of bytes available in UART read buffer, always 16 since I2C does not have the ability to
know how much data is available

read(num_bytes=1)
Read up to num_bytes of data from the GPS directly, without parsing. Returns a bytearray with up to
num_bytes or None if nothing was read

readline()
Returns a newline terminated bytearray, must have timeout set for the underlying UART or this will block
forever!

write(bytestr)
Write a bytestring data to the GPS directly, without parsing or checksums

6.8. adafruit_gps 27

Adafruit GPS Library Documentation, Release 1.0

28 Chapter 6. Table of Contents

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

29

Adafruit GPS Library Documentation, Release 1.0

30 Chapter 7. Indices and tables

Python Module Index

a
adafruit_gps, 25

31

Adafruit GPS Library Documentation, Release 1.0

32 Python Module Index

Index

A
adafruit_gps (module), 25

D
datetime (adafruit_gps.GPS attribute), 26

G
GPS (class in adafruit_gps), 26
GPS_GtopI2C (class in adafruit_gps), 26

H
has_3d_fix (adafruit_gps.GPS attribute), 26
has_fix (adafruit_gps.GPS attribute), 26

I
in_waiting (adafruit_gps.GPS attribute), 26
in_waiting (adafruit_gps.GPS_GtopI2C attribute),

27

N
nmea_sentence (adafruit_gps.GPS attribute), 26

R
read() (adafruit_gps.GPS method), 26
read() (adafruit_gps.GPS_GtopI2C method), 27
readline() (adafruit_gps.GPS method), 26
readline() (adafruit_gps.GPS_GtopI2C method), 27

S
send_command() (adafruit_gps.GPS method), 26

U
update() (adafruit_gps.GPS method), 26

W
write() (adafruit_gps.GPS method), 26
write() (adafruit_gps.GPS_GtopI2C method), 27

33

	Dependencies
	Installing from PyPI
	Usage Example
	Contributing
	Documentation
	Table of Contents
	Communicating with the GPS
	Sentence format
	Checksums
	Initial Configuration
	Configuring the GPS
	Poll for data

	Selected Data Types
	RMC - Recommended Minimum Navigation Information
	GGA - Global Positioning System Fix Data

	Simple test
	Echo test
	Time source
	Data logging
	Satellite fix
	adafruit_gps
	Implementation Notes

	Indices and tables
	Python Module Index
	Index

