

Introduction

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/rfm69/en/latest/][image: Discord]
 [https://discord.gg/nBQh6qu][image: Build Status]
 [https://travis-ci.org/adafruit/Adafruit_CircuitPython_RFM69]CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible sending and
receiving of packets with RFM69 series radios (433/915Mhz).

Note

This does NOT support advanced RadioHead features like guaranteed delivery–only ‘raw’ packets are currently supported.

Warning

This is NOT for LoRa radios!

Note

This is a ‘best effort’ at receiving data using pure Python code–there is not interrupt
support so you might lose packets if they’re sent too quickly for the board to process them.
You will have the most luck using this in simple low bandwidth scenarios like sending and
receiving a 60 byte packet at a time–don’t try to receive many kilobytes of data at a time!

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

	Bus Device [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Usage Example

See examples/simpletest.py for a simple demo of the usage.

API Reference

	adafruit_rfm69

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_RFM69/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Building locally

To build this library locally you’ll need to install the
circuitpython-build-tools [https://github.com/adafruit/circuitpython-build-tools] package.

python3 -m venv .env
source .env/bin/activate
pip install circuitpython-build-tools

Once installed, make sure you are in the virtual environment:

source .env/bin/activate

Then run the build:

circuitpython-build-bundles --filename_prefix adafruit-circuitpython-rfm69 --library_location .

adafruit_rfm69

CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible sending and
receiving of packets with RFM69 series radios (433/915Mhz).

Note

This does NOT support advanced RadioHead features like guaranteed delivery–only ‘raw’
packets are currently supported.

Warning

This is NOT for LoRa radios!

Note

This is a ‘best effort’ at receiving data using pure Python code–there is not interrupt
support so you might lose packets if they’re sent too quickly for the board to process them.
You will have the most luck using this in simple low bandwidth scenarios like sending and
receiving a 60 byte packet at a time–don’t try to receive many kilobytes of data at a time!

	Author(s): Tony DiCola

	
class adafruit_rfm69.RFM69(spi, cs, reset, frequency, *, sync_word=b'-xd4', preamble_length=4, encryption_key=None, high_power=True)

	Interface to a RFM69 series packet radio. Allows simple sending and
receiving of wireless data at supported frequencies of the radio
(433/915mhz).

	Parameters

	
	spi (busio.SPI [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI]) – The SPI bus connected to the chip. Ensure SCK, MOSI, and MISO are
connected.

	cs (DigitalInOut [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html#digitalio.DigitalInOut]) – A DigitalInOut object connected to the chip’s CS/chip select
line.

	reset (DigitalInOut [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html#digitalio.DigitalInOut]) – A DigitalInOut object connected to the chip’s RST/reset
line.

	frequency (int [https://docs.python.org/3.4/library/functions.html#int]) – The center frequency to configure for radio transmission and reception.
Must be a frequency supported by your hardware (i.e. either 433 or 915mhz).

	sync_word (bytes [https://docs.python.org/3.4/library/functions.html#bytes]) – A byte string up to 8 bytes long which represents the syncronization
word used by received and transmitted packets. Read the datasheet for a full understanding
of this value! However by default the library will set a value that matches the RadioHead
Arduino library.

	preamble_length (int [https://docs.python.org/3.4/library/functions.html#int]) – The number of bytes to pre-pend to a data packet as a preamble.
This is by default 4 to match the RadioHead library.

	encryption_key (bytes [https://docs.python.org/3.4/library/functions.html#bytes]) – A 16 byte long string that represents the AES encryption key to use
when encrypting and decrypting packets. Both the transmitter and receiver MUST have the
same key value! By default no encryption key is set or used.

	high_power (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Indicate if the chip is a high power variant that supports boosted
transmission power. The default is True as it supports the common RFM69HCW modules sold by
Adafruit.

Note

The D0/interrupt line is currently unused by this module and can remain unconnected.

Remember this library makes a best effort at receiving packets with pure Python code. Trying
to receive packets too quickly will result in lost data so limit yourself to simple scenarios
of sending and receiving single packets at a time.

Also note this library tries to be compatible with raw RadioHead Arduino library communication.
This means the library sets up the radio modulation to match RadioHead’s default of GFSK
encoding, 250kbit/s bitrate, and 250khz frequency deviation. To change this requires explicitly
setting the radio’s bitrate and encoding register bits. Read the datasheet and study the init
function to see an example of this–advanced users only! Advanced RadioHead features like
address/node specific packets or guaranteed delivery are not supported. Only simple broadcast
of packets to all listening radios is supported. Features like addressing and guaranteed
delivery need to be implemented at an application level.

	
bitrate

	The modulation bitrate in bits/second (or chip rate if Manchester encoding is enabled).
Can be a value from ~489 to 32mbit/s, but see the datasheet for the exact supported
values.

	
encryption_key

	The AES encryption key used to encrypt and decrypt packets by the chip. This can be set
to None to disable encryption (the default), otherwise it must be a 16 byte long byte
string which defines the key (both the transmitter and receiver must use the same key
value).

	
frequency_deviation

	The frequency deviation in Hertz.

	
frequency_mhz

	The frequency of the radio in Megahertz. Only the allowed values for your radio must be
specified (i.e. 433 vs. 915 mhz)!

	
idle()

	Enter idle standby mode (switching off high power amplifiers if necessary).

	
listen()

	Listen for packets to be received by the chip. Use receive() to listen, wait
and retrieve packets as they’re available.

	
operation_mode

	The operation mode value. Unless you’re manually controlling the chip you shouldn’t
change the operation_mode with this property as other side-effects are required for
changing logical modes–use idle(), sleep(), transmit(),
listen() instead to signal intent for explicit logical modes.

	
preamble_length

	The length of the preamble for sent and received packets, an unsigned 16-bit value.
Received packets must match this length or they are ignored! Set to 4 to match the
RadioHead RFM69 library.

	
receive(timeout_s=0.5, keep_listening=True)

	Wait to receive a packet from the receiver. Will wait for up to timeout_s amount of
seconds for a packet to be received and decoded. If a packet is found the payload bytes
are returned, otherwise None is returned (which indicates the timeout elapsed with no
reception). Note this assumes a 4-byte header is prepended to the data for compatibilty
with the RadioHead library (the header is not validated nor returned). If keep_listening
is True (the default) the chip will immediately enter listening mode after reception of
a packet, otherwise it will fall back to idle mode and ignore any future reception.

	
reset()

	Perform a reset of the chip.

	
rssi

	The received strength indicator (in dBm) of the last received message.

	
send(data)

	Send a string of data using the transmitter. You can only send 60 bytes at a time
(limited by chip’s FIFO size and appended headers). Note this appends a 4 byte header to
be compatible with the RadioHead library.

	
sleep()

	Enter sleep mode.

	
sync_word

	The synchronization word value. This is a byte string up to 8 bytes long (64 bits)
which indicates the synchronization word for transmitted and received packets. Any
received packet which does not include this sync word will be ignored. The default value
is 0x2D, 0xD4 which matches the RadioHead RFM69 library. Setting a value of None will
disable synchronization word matching entirely.

	
temperature

	The internal temperature of the chip in degrees Celsius. Be warned this is not
calibrated or very accurate.

Warning

Reading this will STOP any receiving/sending that might be happening!

	
transmit()

	Transmit a packet which is queued in the FIFO. This is a low level function for
entering transmit mode and more. For generating and transmitting a packet of data use
send() instead.

	
tx_power

	The transmit power in dBm. Can be set to a value from -2 to 20 for high power devices
(RFM69HCW, high_power=True) or -18 to 13 for low power devices. Only integer power
levels are actually set (i.e. 12.5 will result in a value of 12 dBm).

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 adafruit_rfm69	

Index

 A
 | B
 | E
 | F
 | I
 | L
 | O
 | P
 | R
 | S
 | T

A

 	
 	adafruit_rfm69 (module)

B

 	
 	bitrate (adafruit_rfm69.RFM69 attribute)

E

 	
 	encryption_key (adafruit_rfm69.RFM69 attribute)

F

 	
 	frequency_deviation (adafruit_rfm69.RFM69 attribute)

 	
 	frequency_mhz (adafruit_rfm69.RFM69 attribute)

I

 	
 	idle() (adafruit_rfm69.RFM69 method)

L

 	
 	listen() (adafruit_rfm69.RFM69 method)

O

 	
 	operation_mode (adafruit_rfm69.RFM69 attribute)

P

 	
 	preamble_length (adafruit_rfm69.RFM69 attribute)

R

 	
 	receive() (adafruit_rfm69.RFM69 method)

 	reset() (adafruit_rfm69.RFM69 method)

 	
 	RFM69 (class in adafruit_rfm69)

 	rssi (adafruit_rfm69.RFM69 attribute)

S

 	
 	send() (adafruit_rfm69.RFM69 method)

 	
 	sleep() (adafruit_rfm69.RFM69 method)

 	sync_word (adafruit_rfm69.RFM69 attribute)

T

 	
 	temperature (adafruit_rfm69.RFM69 attribute)

 	
 	transmit() (adafruit_rfm69.RFM69 method)

 	tx_power (adafruit_rfm69.RFM69 attribute)

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 adafruit_rfm69

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

