
AdafruitRFM69 Library Documentation
Release 1.0

Tony DiCola

Apr 10, 2020





Contents

1 Dependencies 3

2 Installing from PyPI 5

3 Usage Example 7

4 Contributing 9

5 Documentation 11

6 Table of Contents 13
6.1 Simple test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 adafruit_rfm69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2.1 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Indices and tables 19

Python Module Index 21

Index 23

i



ii



AdafruitRFM69 Library Documentation, Release 1.0

CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible sending and receiving of
packets with RFM69 series radios (433/915Mhz).

Note: This does NOT support advanced RadioHead features like guaranteed delivery–only ‘raw’ packets are currently
supported.

Warning: This is NOT for LoRa radios!

Note: This is a ‘best effort’ at receiving data using pure Python code–there is not interrupt support so you might lose
packets if they’re sent too quickly for the board to process them. You will have the most luck using this in simple low
bandwidth scenarios like sending and receiving a 60 byte packet at a time–don’t try to receive many kilobytes of data
at a time!

Contents 1

https://circuitpython.readthedocs.io/projects/rfm69/en/latest/
https://discord.gg/nBQh6qu
https://github.com/adafruit/Adafruit_CircuitPython_RFM69/actions/


AdafruitRFM69 Library Documentation, Release 1.0

2 Contents



CHAPTER 1

Dependencies

This driver depends on:

• Adafruit CircuitPython

• Bus Device

Please ensure all dependencies are available on the CircuitPython filesystem. This is easily achieved by downloading
the Adafruit library and driver bundle.

3

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
https://github.com/adafruit/Adafruit_CircuitPython_Bundle


AdafruitRFM69 Library Documentation, Release 1.0

4 Chapter 1. Dependencies



CHAPTER 2

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from PyPI. To install for
current user:

pip3 install adafruit-circuitpython-rfm69

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-rfm69

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-rfm69

5

https://pypi.org/project/adafruit-circuitpython-rfm69/


AdafruitRFM69 Library Documentation, Release 1.0

6 Chapter 2. Installing from PyPI



CHAPTER 3

Usage Example

See examples/rfm69_simpletest.py for a simple demo of the usage. Note: the default baudrate for the SPI is 5000000
(5MHz). The maximum setting is 10Mhz but transmission errors have been observed expecially when using breakout
boards. For breakout boards or other configurations where the boards are separated, it may be necessary to reduce the
baudrate for reliable data transmission. The baud rate may be specified as an keyword parameter when initializing the
board. To set it to 1000000 use :

# Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ,baudrate=1000000)

7



AdafruitRFM69 Library Documentation, Release 1.0

8 Chapter 3. Usage Example



CHAPTER 4

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

9

https://github.com/adafruit/Adafruit_CircuitPython_RFM69/blob/master/CODE_OF_CONDUCT.md


AdafruitRFM69 Library Documentation, Release 1.0

10 Chapter 4. Contributing



CHAPTER 5

Documentation

For information on building library documentation, please check out this guide.

11

https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1


AdafruitRFM69 Library Documentation, Release 1.0

12 Chapter 5. Documentation



CHAPTER 6

Table of Contents

6.1 Simple test

Ensure your device works with this simple test.

Listing 1: examples/rfm69_simpletest.py

1 # Simple example to send a message and then wait indefinitely for messages
2 # to be received. This uses the default RadioHead compatible GFSK_Rb250_Fd250
3 # modulation and packet format for the radio.
4 # Author: Tony DiCola
5 import board
6 import busio
7 import digitalio
8

9 import adafruit_rfm69
10

11

12 # Define radio parameters.
13 RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
14 # module! Can be a value like 915.0, 433.0, etc.
15

16 # Define pins connected to the chip, use these if wiring up the breakout according to
→˓the guide:

17 CS = digitalio.DigitalInOut(board.D5)
18 RESET = digitalio.DigitalInOut(board.D6)
19 # Or uncomment and instead use these if using a Feather M0 RFM69 board
20 # and the appropriate CircuitPython build:
21 # CS = digitalio.DigitalInOut(board.RFM69_CS)
22 # RESET = digitalio.DigitalInOut(board.RFM69_RST)
23

24 # Define the onboard LED
25 LED = digitalio.DigitalInOut(board.D13)
26 LED.direction = digitalio.Direction.OUTPUT

(continues on next page)

13



AdafruitRFM69 Library Documentation, Release 1.0

(continued from previous page)

27

28 # Initialize SPI bus.
29 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
30

31 # Initialze RFM radio
32 rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)
33

34 # Optionally set an encryption key (16 byte AES key). MUST match both
35 # on the transmitter and receiver (or be set to None to disable/the default).
36 rfm69.encryption_key = (
37 b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
38 )
39

40 # Print out some chip state:
41 print("Temperature: {0}C".format(rfm69.temperature))
42 print("Frequency: {0}mhz".format(rfm69.frequency_mhz))
43 print("Bit rate: {0}kbit/s".format(rfm69.bitrate / 1000))
44 print("Frequency deviation: {0}hz".format(rfm69.frequency_deviation))
45

46 # Send a packet. Note you can only send a packet up to 60 bytes in length.
47 # This is a limitation of the radio packet size, so if you need to send larger
48 # amounts of data you will need to break it into smaller send calls. Each send
49 # call will wait for the previous one to finish before continuing.
50 rfm69.send(bytes("Hello world!\r\n", "utf-8"))
51 print("Sent hello world message!")
52

53 # Wait to receive packets. Note that this library can't receive data at a fast
54 # rate, in fact it can only receive and process one 60 byte packet at a time.
55 # This means you should only use this for low bandwidth scenarios, like sending
56 # and receiving a single message at a time.
57 print("Waiting for packets...")
58 while True:
59 packet = rfm69.receive()
60 # Optionally change the receive timeout from its default of 0.5 seconds:
61 # packet = rfm69.receive(timeout=5.0)
62 # If no packet was received during the timeout then None is returned.
63 if packet is None:
64 # Packet has not been received
65 LED.value = False
66 print("Received nothing! Listening again...")
67 else:
68 # Received a packet!
69 LED.value = True
70 # Print out the raw bytes of the packet:
71 print("Received (raw bytes): {0}".format(packet))
72 # And decode to ASCII text and print it too. Note that you always
73 # receive raw bytes and need to convert to a text format like ASCII
74 # if you intend to do string processing on your data. Make sure the
75 # sending side is sending ASCII data before you try to decode!
76 packet_text = str(packet, "ascii")
77 print("Received (ASCII): {0}".format(packet_text))

14 Chapter 6. Table of Contents



AdafruitRFM69 Library Documentation, Release 1.0

6.2 adafruit_rfm69

CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible sending and receiving of
packets with RFM69 series radios (433/915Mhz).

Note: This does NOT support advanced RadioHead features like guaranteed delivery–only ‘raw’ packets are currently
supported.

Warning: This is NOT for LoRa radios!

Note: This is a ‘best effort’ at receiving data using pure Python code–there is not interrupt support so you might lose
packets if they’re sent too quickly for the board to process them. You will have the most luck using this in simple low
bandwidth scenarios like sending and receiving a 60 byte packet at a time–don’t try to receive many kilobytes of data
at a time!

• Author(s): Tony DiCola

6.2.1 Implementation Notes

Hardware:

• Adafruit RFM69HCW Transceiver Radio Breakout - 868 or 915 MHz - RadioFruit (Product ID: 3070)

• Adafruit RFM69HCW Transceiver Radio Breakout - 433 MHz - RadioFruit (Product ID: 3071)

• Adafruit Feather M0 RFM69HCW Packet Radio - 868 or 915 MHz - RadioFruit (Product ID: 3176)

• Adafruit Feather M0 RFM69HCW Packet Radio - 433 MHz - RadioFruit (Product ID: 3177)

• Adafruit Radio FeatherWing - RFM69HCW 900MHz - RadioFruit (Product ID: 3229)

• Adafruit Radio FeatherWing - RFM69HCW 433MHz - RadioFruit (Product ID: 3230)

Software and Dependencies:

• Adafruit CircuitPython firmware for the ESP8622 and M0-based boards: https://github.com/adafruit/
circuitpython/releases

• Adafruit’s Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

class adafruit_rfm69.RFM69(spi, cs, reset, frequency, *, sync_word=b’-xd4’, preamble_length=4,
encryption_key=None, high_power=True, baudrate=5000000)

Interface to a RFM69 series packet radio. Allows simple sending and receiving of wireless data at supported
frequencies of the radio (433/915mhz).

Parameters

• spi (busio.SPI) – The SPI bus connected to the chip. Ensure SCK, MOSI, and MISO
are connected.

• cs (DigitalInOut) – A DigitalInOut object connected to the chip’s CS/chip select line.

• reset (DigitalInOut) – A DigitalInOut object connected to the chip’s RST/reset line.

• frequency (int) – The center frequency to configure for radio transmission and recep-
tion. Must be a frequency supported by your hardware (i.e. either 433 or 915mhz).

6.2. adafruit_rfm69 15

https://www.adafruit.com/product/3070
https://www.adafruit.com/product/3071
https://www.adafruit.com/product/3176
https://www.adafruit.com/product/3177
https://www.adafruit.com/product/3229
https://www.adafruit.com/product/3230
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html#digitalio.DigitalInOut
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html#digitalio.DigitalInOut
https://docs.python.org/3.4/library/functions.html#int


AdafruitRFM69 Library Documentation, Release 1.0

• sync_word (bytes) – A byte string up to 8 bytes long which represents the syncroniza-
tion word used by received and transmitted packets. Read the datasheet for a full under-
standing of this value! However by default the library will set a value that matches the
RadioHead Arduino library.

• preamble_length (int) – The number of bytes to pre-pend to a data packet as a pream-
ble. This is by default 4 to match the RadioHead library.

• encryption_key (bytes) – A 16 byte long string that represents the AES encryption
key to use when encrypting and decrypting packets. Both the transmitter and receiver MUST
have the same key value! By default no encryption key is set or used.

• high_power (bool) – Indicate if the chip is a high power variant that supports boosted
transmission power. The default is True as it supports the common RFM69HCW modules
sold by Adafruit.

Note: The D0/interrupt line is currently unused by this module and can remain unconnected.

Remember this library makes a best effort at receiving packets with pure Python code. Trying to receive packets
too quickly will result in lost data so limit yourself to simple scenarios of sending and receiving single packets
at a time.

Also note this library tries to be compatible with raw RadioHead Arduino library communication. This means
the library sets up the radio modulation to match RadioHead’s default of GFSK encoding, 250kbit/s bitrate, and
250khz frequency deviation. To change this requires explicitly setting the radio’s bitrate and encoding register
bits. Read the datasheet and study the init function to see an example of this–advanced users only! Advanced
RadioHead features like address/node specific packets or guaranteed delivery are not supported. Only simple
broadcast of packets to all listening radios is supported. Features like addressing and guaranteed delivery need
to be implemented at an application level.

bitrate
The modulation bitrate in bits/second (or chip rate if Manchester encoding is enabled). Can be a value
from ~489 to 32mbit/s, but see the datasheet for the exact supported values.

encryption_key
The AES encryption key used to encrypt and decrypt packets by the chip. This can be set to None to
disable encryption (the default), otherwise it must be a 16 byte long byte string which defines the key
(both the transmitter and receiver must use the same key value).

frequency_deviation
The frequency deviation in Hertz.

frequency_mhz
The frequency of the radio in Megahertz. Only the allowed values for your radio must be specified (i.e.
433 vs. 915 mhz)!

idle()
Enter idle standby mode (switching off high power amplifiers if necessary).

listen()
Listen for packets to be received by the chip. Use receive() to listen, wait and retrieve packets as
they’re available.

operation_mode
The operation mode value. Unless you’re manually controlling the chip you shouldn’t change the opera-
tion_mode with this property as other side-effects are required for changing logical modes–use idle(),
sleep(), transmit(), listen() instead to signal intent for explicit logical modes.

16 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#bytes
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bytes
https://docs.python.org/3.4/library/functions.html#bool


AdafruitRFM69 Library Documentation, Release 1.0

preamble_length
The length of the preamble for sent and received packets, an unsigned 16-bit value. Received packets must
match this length or they are ignored! Set to 4 to match the RadioHead RFM69 library.

receive(timeout=0.5, keep_listening=True, with_header=False, rx_filter=255)
Wait to receive a packet from the receiver. Will wait for up to timeout_s amount of seconds for a packet to
be received and decoded. If a packet is found the payload bytes are returned, otherwise None is returned
(which indicates the timeout elapsed with no reception). If timeout is None then it is not used ( for use
with interrupts) If keep_listening is True (the default) the chip will immediately enter listening mode after
reception of a packet, otherwise it will fall back to idle mode and ignore any future reception. A 4-byte
header must be prepended to the data for compatibilty with the RadioHead library. The header consists
of a 4 bytes (To,From,ID,Flags). The default setting will accept any incomming packet and strip the
header before returning the packet to the caller. If with_header is True then the 4 byte header will be
returned with the packet. The payload then begins at packet[4]. rx_fliter may be set to reject any “non-
broadcast” packets that do not contain the specfied “To” value in the header. if rx_filter is set to 0xff
(_RH_BROADCAST_ADDRESS) or if the “To” field (packet[[0]) is equal to 0xff then the packet will be
accepted and returned to the caller. If rx_filter is not 0xff and packet[0] does not match rx_filter then the
packet is ignored and None is returned.

reset()
Perform a reset of the chip.

rssi
The received strength indicator (in dBm) of the last received message.

send(data, timeout=2.0, keep_listening=False, tx_header=(255, 255, 0, 0))
Send a string of data using the transmitter. You can only send 60 bytes at a time (limited by chip’s FIFO
size and appended headers). This appends a 4 byte header to be compatible with the RadioHead library.
The tx_header defaults to using the Broadcast addresses. It may be overidden by specifying a 4-tuple of
bytes containing (To,From,ID,Flags) The timeout is just to prevent a hang (arbitrarily set to 2 seconds) The
keep_listening argument should be set to True if you want to start listening automatically after the packet
is sent. The default setting is False.

Returns: True if success or False if the send timed out.

sleep()
Enter sleep mode.

sync_word
The synchronization word value. This is a byte string up to 8 bytes long (64 bits) which indicates the
synchronization word for transmitted and received packets. Any received packet which does not include
this sync word will be ignored. The default value is 0x2D, 0xD4 which matches the RadioHead RFM69
library. Setting a value of None will disable synchronization word matching entirely.

temperature
The internal temperature of the chip in degrees Celsius. Be warned this is not calibrated or very accurate.

Warning: Reading this will STOP any receiving/sending that might be happening!

transmit()
Transmit a packet which is queued in the FIFO. This is a low level function for entering transmit mode and
more. For generating and transmitting a packet of data use send() instead.

tx_power
The transmit power in dBm. Can be set to a value from -2 to 20 for high power devices (RFM69HCW,
high_power=True) or -18 to 13 for low power devices. Only integer power levels are actually set (i.e. 12.5
will result in a value of 12 dBm).

6.2. adafruit_rfm69 17



AdafruitRFM69 Library Documentation, Release 1.0

18 Chapter 6. Table of Contents



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19



AdafruitRFM69 Library Documentation, Release 1.0

20 Chapter 7. Indices and tables



Python Module Index

a
adafruit_rfm69, 14

21



AdafruitRFM69 Library Documentation, Release 1.0

22 Python Module Index



Index

A
adafruit_rfm69 (module), 14

B
bitrate (adafruit_rfm69.RFM69 attribute), 16

E
encryption_key (adafruit_rfm69.RFM69 attribute),

16

F
frequency_deviation (adafruit_rfm69.RFM69 at-

tribute), 16
frequency_mhz (adafruit_rfm69.RFM69 attribute),

16

I
idle() (adafruit_rfm69.RFM69 method), 16

L
listen() (adafruit_rfm69.RFM69 method), 16

O
operation_mode (adafruit_rfm69.RFM69 attribute),

16

P
preamble_length (adafruit_rfm69.RFM69 at-

tribute), 16

R
receive() (adafruit_rfm69.RFM69 method), 17
reset() (adafruit_rfm69.RFM69 method), 17
RFM69 (class in adafruit_rfm69), 15
rssi (adafruit_rfm69.RFM69 attribute), 17

S
send() (adafruit_rfm69.RFM69 method), 17

sleep() (adafruit_rfm69.RFM69 method), 17
sync_word (adafruit_rfm69.RFM69 attribute), 17

T
temperature (adafruit_rfm69.RFM69 attribute), 17
transmit() (adafruit_rfm69.RFM69 method), 17
tx_power (adafruit_rfm69.RFM69 attribute), 17

23


	Dependencies
	Installing from PyPI
	Usage Example
	Contributing
	Documentation
	Table of Contents
	Simple test
	adafruit_rfm69
	Implementation Notes


	Indices and tables
	Python Module Index
	Index

