

Introduction

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/rfm69/en/latest/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_RFM69/actions/]CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible sending and
receiving of packets with RFM69 series radios (433/915Mhz).

Warning

This is NOT for LoRa radios!

Note

This is a ‘best effort’ at receiving data using pure Python code–there is not interrupt
support so you might lose packets if they’re sent too quickly for the board to process them.
You will have the most luck using this in simple low bandwidth scenarios like sending and
receiving a 60 byte packet at a time–don’t try to receive many kilobytes of data at a time!

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

	Bus Device [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-rfm69/]. To install for current user:

pip3 install adafruit-circuitpython-rfm69

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-rfm69

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-rfm69

Usage Example

See examples/rfm69_simpletest.py for a simple demo of the usage.
Note: the default baudrate for the SPI is 2000000 (2MHz).
The maximum setting is 10Mhz but
transmission errors have been observed expecially when using breakout boards.
For breakout boards or other configurations where the boards are separated,
it may be necessary to reduce the baudrate for reliable data transmission.
The baud rate may be specified as an keyword parameter when initializing the board.
To set it to 1000000 use :

Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ,baudrate=1000000)

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_RFM69/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

API Reference

	adafruit_rfm69
	Implementation Notes

Related Products

	Adafruit RFM69HCW Transceiver Radio Breakout - 868 or 915 MHz - RadioFruit [https://www.adafruit.com/product/3070]

	Adafruit RFM69HCW Transceiver Radio Breakout - 433 MHz - RadioFruit [https://www.adafruit.com/product/3071]

	Adafruit Feather M0 RFM69HCW Packet Radio - 868 or 915 MHz - RadioFruit [https://www.adafruit.com/product/3176]

	Adafruit Feather M0 RFM69HCW Packet Radio - 433 MHz - RadioFruit [https://www.adafruit.com/product/3177]

	Adafruit Radio FeatherWing - RFM69HCW 900MHz - RadioFruit [https://www.adafruit.com/product/3229]

	Adafruit Radio FeatherWing - RFM69HCW 433MHz - RadioFruit [https://www.adafruit.com/product/3230]

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_RFM69/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/rfm69_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

	# SPDX-FileCopyrightText: 2018 Tony DiCola for Adafruit Industries
SPDX-License-Identifier: MIT

Simple example to send a message and then wait indefinitely for messages
to be received. This uses the default RadioHead compatible GFSK_Rb250_Fd250
modulation and packet format for the radio.
import board
import busio
import digitalio

import adafruit_rfm69

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip, use these if wiring up the breakout according to the guide:
CS = digitalio.DigitalInOut(board.D5)
RESET = digitalio.DigitalInOut(board.D6)
Or uncomment and instead use these if using a Feather M0 RFM69 board
and the appropriate CircuitPython build:
CS = digitalio.DigitalInOut(board.RFM69_CS)
RESET = digitalio.DigitalInOut(board.RFM69_RST)

Define the onboard LED
LED = digitalio.DigitalInOut(board.D13)
LED.direction = digitalio.Direction.OUTPUT

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialze RFM radio
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)

Optionally set an encryption key (16 byte AES key). MUST match both
on the transmitter and receiver (or be set to None to disable/the default).
rfm69.encryption_key = (
 b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
)

Print out some chip state:
print("Temperature: {0}C".format(rfm69.temperature))
print("Frequency: {0}mhz".format(rfm69.frequency_mhz))
print("Bit rate: {0}kbit/s".format(rfm69.bitrate / 1000))
print("Frequency deviation: {0}hz".format(rfm69.frequency_deviation))

Send a packet. Note you can only send a packet up to 60 bytes in length.
This is a limitation of the radio packet size, so if you need to send larger
amounts of data you will need to break it into smaller send calls. Each send
call will wait for the previous one to finish before continuing.
rfm69.send(bytes("Hello world!\r\n", "utf-8"))
print("Sent hello world message!")

Wait to receive packets. Note that this library can't receive data at a fast
rate, in fact it can only receive and process one 60 byte packet at a time.
This means you should only use this for low bandwidth scenarios, like sending
and receiving a single message at a time.
print("Waiting for packets...")
while True:
 packet = rfm69.receive()
 # Optionally change the receive timeout from its default of 0.5 seconds:
 # packet = rfm69.receive(timeout=5.0)
 # If no packet was received during the timeout then None is returned.
 if packet is None:
 # Packet has not been received
 LED.value = False
 print("Received nothing! Listening again...")
 else:
 # Received a packet!
 LED.value = True
 # Print out the raw bytes of the packet:
 print("Received (raw bytes): {0}".format(packet))
 # And decode to ASCII text and print it too. Note that you always
 # receive raw bytes and need to convert to a text format like ASCII
 # if you intend to do string processing on your data. Make sure the
 # sending side is sending ASCII data before you try to decode!
 packet_text = str(packet, "ascii")
 print("Received (ASCII): {0}".format(packet_text))

adafruit_rfm69

CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible sending and
receiving of packets with RFM69 series radios (433/915Mhz).

Warning

This is NOT for LoRa radios!

Note

This is a ‘best effort’ at receiving data using pure Python code–there is not interrupt
support so you might lose packets if they’re sent too quickly for the board to process them.
You will have the most luck using this in simple low bandwidth scenarios like sending and
receiving a 60 byte packet at a time–don’t try to receive many kilobytes of data at a time!

	Author(s): Tony DiCola, Jerry Needell

Implementation Notes

Hardware:

	Adafruit RFM69HCW Transceiver Radio Breakout - 868 or 915 MHz - RadioFruit [https://www.adafruit.com/product/3070] (Product ID: 3070)

	Adafruit RFM69HCW Transceiver Radio Breakout - 433 MHz - RadioFruit [https://www.adafruit.com/product/3071] (Product ID: 3071)

	Adafruit Feather M0 RFM69HCW Packet Radio - 868 or 915 MHz - RadioFruit [https://www.adafruit.com/product/3176] (Product ID: 3176)

	Adafruit Feather M0 RFM69HCW Packet Radio - 433 MHz - RadioFruit [https://www.adafruit.com/product/3177] (Product ID: 3177)

	Adafruit Radio FeatherWing - RFM69HCW 900MHz - RadioFruit [https://www.adafruit.com/product/3229] (Product ID: 3229)

	Adafruit Radio FeatherWing - RFM69HCW 433MHz - RadioFruit [https://www.adafruit.com/product/3230] (Product ID: 3230)

Software and Dependencies:

	Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
https://github.com/adafruit/circuitpython/releases

	Adafruit’s Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

	
class adafruit_rfm69.RFM69(spi, cs, reset, frequency, *, sync_word=b'-xd4', preamble_length=4, encryption_key=None, high_power=True, baudrate=2000000)[source]

	Interface to a RFM69 series packet radio. Allows simple sending and
receiving of wireless data at supported frequencies of the radio
(433/915mhz).

	Parameters

	
	spi (busio.SPI [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.SPI]) – The SPI bus connected to the chip. Ensure SCK, MOSI, and MISO are
connected.

	cs (DigitalInOut [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut]) – A DigitalInOut object connected to the chip’s CS/chip select
line.

	reset (DigitalInOut [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut]) – A DigitalInOut object connected to the chip’s RST/reset
line.

	frequency (int [https://docs.python.org/3.4/library/functions.html#int]) – The center frequency to configure for radio transmission and reception.
Must be a frequency supported by your hardware (i.e. either 433 or 915mhz).

	sync_word (bytes [https://docs.python.org/3.4/library/functions.html#bytes]) – A byte string up to 8 bytes long which represents the syncronization
word used by received and transmitted packets. Read the datasheet for a full understanding
of this value! However by default the library will set a value that matches the RadioHead
Arduino library.

	preamble_length (int [https://docs.python.org/3.4/library/functions.html#int]) – The number of bytes to pre-pend to a data packet as a preamble.
This is by default 4 to match the RadioHead library.

	encryption_key (bytes [https://docs.python.org/3.4/library/functions.html#bytes]) – A 16 byte long string that represents the AES encryption key to use
when encrypting and decrypting packets. Both the transmitter and receiver MUST have the
same key value! By default no encryption key is set or used.

	high_power (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Indicate if the chip is a high power variant that supports boosted
transmission power. The default is True as it supports the common RFM69HCW modules sold by
Adafruit.

Note

The D0/interrupt line is currently unused by this module and can remain unconnected.

Remember this library makes a best effort at receiving packets with pure Python code. Trying
to receive packets too quickly will result in lost data so limit yourself to simple scenarios
of sending and receiving single packets at a time.

Also note this library tries to be compatible with raw RadioHead Arduino library communication.
This means the library sets up the radio modulation to match RadioHead’s default of GFSK
encoding, 250kbit/s bitrate, and 250khz frequency deviation. To change this requires explicitly
setting the radio’s bitrate and encoding register bits. Read the datasheet and study the init
function to see an example of this–advanced users only! Advanced RadioHead features like
address/node specific packets or “reliable datagram” delivery are supported however due to the
limitations noted, “reliable datagram” is still subject to missed packets but with it, the
sender is notified if a packe has potentially been missed.

	
ack_delay = None

	The delay time before attemting to send an ACK.
If ACKs are being missed try setting this to .1 or .2.

	
ack_retries = None

	The number of ACK retries before reporting a failure.

	
ack_wait = None

	The delay time before attempting a retry after not receiving an ACK

	
bitrate

	The modulation bitrate in bits/second (or chip rate if Manchester encoding is enabled).
Can be a value from ~489 to 32mbit/s, but see the datasheet for the exact supported
values.

	
destination = None

	The default destination address for packet transmissions. (0-255).
If 255 (0xff) then any receiving node should accept the packet.
Second byte of the RadioHead header.

	
encryption_key

	The AES encryption key used to encrypt and decrypt packets by the chip. This can be set
to None to disable encryption (the default), otherwise it must be a 16 byte long byte
string which defines the key (both the transmitter and receiver must use the same key
value).

	
flags = None

	Upper 4 bits reserved for use by Reliable Datagram Mode.
Lower 4 bits may be used to pass information.
Fourth byte of the RadioHead header.

	
frequency_deviation

	The frequency deviation in Hertz.

	
frequency_mhz

	The frequency of the radio in Megahertz. Only the allowed values for your radio must be
specified (i.e. 433 vs. 915 mhz)!

	
identifier = None

	Automatically set to the sequence number when send_with_ack() used.
Third byte of the RadioHead header.

	
idle()[source]

	Enter idle standby mode (switching off high power amplifiers if necessary).

	
last_rssi = None

	The RSSI of the last received packet. Stored when the packet was received.
This instantaneous RSSI value may not be accurate once the
operating mode has been changed.

	
listen()[source]

	Listen for packets to be received by the chip. Use receive() to listen, wait
and retrieve packets as they’re available.

	
node = None

	The default address of this Node. (0-255).
If not 255 (0xff) then only packets address to this node will be accepted.
First byte of the RadioHead header.

	
operation_mode

	The operation mode value. Unless you’re manually controlling the chip you shouldn’t
change the operation_mode with this property as other side-effects are required for
changing logical modes–use idle(), sleep(), transmit(),
listen() instead to signal intent for explicit logical modes.

	
packet_sent()[source]

	Transmit status

	
payload_ready()[source]

	Receive status

	
preamble_length

	The length of the preamble for sent and received packets, an unsigned 16-bit value.
Received packets must match this length or they are ignored! Set to 4 to match the
RadioHead RFM69 library.

	
receive(*, keep_listening=True, with_ack=False, timeout=None, with_header=False)[source]

	Wait to receive a packet from the receiver. If a packet is found the payload bytes
are returned, otherwise None is returned (which indicates the timeout elapsed with no
reception).
If keep_listening is True (the default) the chip will immediately enter listening mode
after reception of a packet, otherwise it will fall back to idle mode and ignore any
future reception.
All packets must have a 4 byte header for compatibilty with the
RadioHead library.
The header consists of 4 bytes (To,From,ID,Flags). The default setting will strip
the header before returning the packet to the caller.
If with_header is True then the 4 byte header will be returned with the packet.
The payload then begins at packet[4].
If with_ack is True, send an ACK after receipt (Reliable Datagram mode)

	
receive_timeout = None

	The amount of time to poll for a received packet.
If no packet is received, the returned packet will be None

	
reset()[source]

	Perform a reset of the chip.

	
rssi

	The received strength indicator (in dBm).
May be inaccuate if not read immediatey. last_rssi contains the value read immediately
receipt of the last packet.

	
send(data, *, keep_listening=False, destination=None, node=None, identifier=None, flags=None)[source]

	Send a string of data using the transmitter.
You can only send 60 bytes at a time
(limited by chip’s FIFO size and appended headers).
This appends a 4 byte header to be compatible with the RadioHead library.
The header defaults to using the initialized attributes:
(destination,node,identifier,flags)
It may be temporarily overidden via the kwargs - destination,node,identifier,flags.
Values passed via kwargs do not alter the attribute settings.
The keep_listening argument should be set to True if you want to start listening
automatically after the packet is sent. The default setting is False.

Returns: True if success or False if the send timed out.

	
send_with_ack(data)[source]

	Reliable Datagram mode:
Send a packet with data and wait for an ACK response.
The packet header is automatically generated.
If enabled, the packet transmission will be retried on failure

	
sleep()[source]

	Enter sleep mode.

	
sync_word

	The synchronization word value. This is a byte string up to 8 bytes long (64 bits)
which indicates the synchronization word for transmitted and received packets. Any
received packet which does not include this sync word will be ignored. The default value
is 0x2D, 0xD4 which matches the RadioHead RFM69 library. Setting a value of None will
disable synchronization word matching entirely.

	
temperature

	The internal temperature of the chip in degrees Celsius. Be warned this is not
calibrated or very accurate.

Warning

Reading this will STOP any receiving/sending that might be happening!

	
transmit()[source]

	Transmit a packet which is queued in the FIFO. This is a low level function for
entering transmit mode and more. For generating and transmitting a packet of data use
send() instead.

	
tx_power

	The transmit power in dBm. Can be set to a value from -2 to 20 for high power devices
(RFM69HCW, high_power=True) or -18 to 13 for low power devices. Only integer power
levels are actually set (i.e. 12.5 will result in a value of 12 dBm).

	
xmit_timeout = None

	The amount of time to wait for the HW to transmit the packet.
This is mainly used to prevent a hang due to a HW issue

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 adafruit_rfm69	

Index

 A
 | B
 | D
 | E
 | F
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | X

A

 	
 	ack_delay (adafruit_rfm69.RFM69 attribute)

 	ack_retries (adafruit_rfm69.RFM69 attribute)

 	
 	ack_wait (adafruit_rfm69.RFM69 attribute)

 	adafruit_rfm69 (module)

B

 	
 	bitrate (adafruit_rfm69.RFM69 attribute)

D

 	
 	destination (adafruit_rfm69.RFM69 attribute)

E

 	
 	encryption_key (adafruit_rfm69.RFM69 attribute)

F

 	
 	flags (adafruit_rfm69.RFM69 attribute)

 	
 	frequency_deviation (adafruit_rfm69.RFM69 attribute)

 	frequency_mhz (adafruit_rfm69.RFM69 attribute)

I

 	
 	identifier (adafruit_rfm69.RFM69 attribute)

 	
 	idle() (adafruit_rfm69.RFM69 method)

L

 	
 	last_rssi (adafruit_rfm69.RFM69 attribute)

 	
 	listen() (adafruit_rfm69.RFM69 method)

N

 	
 	node (adafruit_rfm69.RFM69 attribute)

O

 	
 	operation_mode (adafruit_rfm69.RFM69 attribute)

P

 	
 	packet_sent() (adafruit_rfm69.RFM69 method)

 	
 	payload_ready() (adafruit_rfm69.RFM69 method)

 	preamble_length (adafruit_rfm69.RFM69 attribute)

R

 	
 	receive() (adafruit_rfm69.RFM69 method)

 	receive_timeout (adafruit_rfm69.RFM69 attribute)

 	
 	reset() (adafruit_rfm69.RFM69 method)

 	RFM69 (class in adafruit_rfm69)

 	rssi (adafruit_rfm69.RFM69 attribute)

S

 	
 	send() (adafruit_rfm69.RFM69 method)

 	send_with_ack() (adafruit_rfm69.RFM69 method)

 	
 	sleep() (adafruit_rfm69.RFM69 method)

 	sync_word (adafruit_rfm69.RFM69 attribute)

T

 	
 	temperature (adafruit_rfm69.RFM69 attribute)

 	
 	transmit() (adafruit_rfm69.RFM69 method)

 	tx_power (adafruit_rfm69.RFM69 attribute)

X

 	
 	xmit_timeout (adafruit_rfm69.RFM69 attribute)

 Source code for adafruit_rfm69

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
`adafruit_rfm69`
==

CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible sending and
receiving of packets with RFM69 series radios (433/915Mhz).

.. warning:: This is NOT for LoRa radios!

.. note:: This is a 'best effort' at receiving data using pure Python code--there is not interrupt
 support so you might lose packets if they're sent too quickly for the board to process them.
 You will have the most luck using this in simple low bandwidth scenarios like sending and
 receiving a 60 byte packet at a time--don't try to receive many kilobytes of data at a time!

* Author(s): Tony DiCola, Jerry Needell

Implementation Notes

Hardware:

* Adafruit `RFM69HCW Transceiver Radio Breakout - 868 or 915 MHz - RadioFruit
 <https://www.adafruit.com/product/3070>`_ (Product ID: 3070)

* Adafruit `RFM69HCW Transceiver Radio Breakout - 433 MHz - RadioFruit
 <https://www.adafruit.com/product/3071>`_ (Product ID: 3071)

* Adafruit `Feather M0 RFM69HCW Packet Radio - 868 or 915 MHz - RadioFruit
 <https://www.adafruit.com/product/3176>`_ (Product ID: 3176)

* Adafruit `Feather M0 RFM69HCW Packet Radio - 433 MHz - RadioFruit
 <https://www.adafruit.com/product/3177>`_ (Product ID: 3177)

* Adafruit `Radio FeatherWing - RFM69HCW 900MHz - RadioFruit
 <https://www.adafruit.com/product/3229>`_ (Product ID: 3229)

* Adafruit `Radio FeatherWing - RFM69HCW 433MHz - RadioFruit
 <https://www.adafruit.com/product/3230>`_ (Product ID: 3230)

Software and Dependencies:

* Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
 https://github.com/adafruit/circuitpython/releases
* Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
"""
import time
import random

from micropython import const

import adafruit_bus_device.spi_device as spidev

__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_RFM69.git"

Internal constants:
_REG_FIFO = const(0x00)
_REG_OP_MODE = const(0x01)
_REG_DATA_MOD = const(0x02)
_REG_BITRATE_MSB = const(0x03)
_REG_BITRATE_LSB = const(0x04)
_REG_FDEV_MSB = const(0x05)
_REG_FDEV_LSB = const(0x06)
_REG_FRF_MSB = const(0x07)
_REG_FRF_MID = const(0x08)
_REG_FRF_LSB = const(0x09)
_REG_VERSION = const(0x10)
_REG_PA_LEVEL = const(0x11)
_REG_RX_BW = const(0x19)
_REG_AFC_BW = const(0x1A)
_REG_RSSI_VALUE = const(0x24)
_REG_DIO_MAPPING1 = const(0x25)
_REG_IRQ_FLAGS1 = const(0x27)
_REG_IRQ_FLAGS2 = const(0x28)
_REG_PREAMBLE_MSB = const(0x2C)
_REG_PREAMBLE_LSB = const(0x2D)
_REG_SYNC_CONFIG = const(0x2E)
_REG_SYNC_VALUE1 = const(0x2F)
_REG_PACKET_CONFIG1 = const(0x37)
_REG_FIFO_THRESH = const(0x3C)
_REG_PACKET_CONFIG2 = const(0x3D)
_REG_AES_KEY1 = const(0x3E)
_REG_TEMP1 = const(0x4E)
_REG_TEMP2 = const(0x4F)
_REG_TEST_PA1 = const(0x5A)
_REG_TEST_PA2 = const(0x5C)
_REG_TEST_DAGC = const(0x6F)

_TEST_PA1_NORMAL = const(0x55)
_TEST_PA1_BOOST = const(0x5D)
_TEST_PA2_NORMAL = const(0x70)
_TEST_PA2_BOOST = const(0x7C)

The crystal oscillator frequency and frequency synthesizer step size.
See the datasheet for details of this calculation.
_FXOSC = 32000000.0
_FSTEP = _FXOSC / 524288

RadioHead specific compatibility constants.
_RH_BROADCAST_ADDRESS = const(0xFF)
The acknowledgement bit in the FLAGS
The top 4 bits of the flags are reserved for RadioHead. The lower 4 bits are reserved
for application layer use.
_RH_FLAGS_ACK = const(0x80)
_RH_FLAGS_RETRY = const(0x40)

User facing constants:
SLEEP_MODE = 0b000
STANDBY_MODE = 0b001
FS_MODE = 0b010
TX_MODE = 0b011
RX_MODE = 0b100

Disable the silly too many instance members warning. Pylint has no knowledge
of the context and is merely guessing at the proper amount of members. This
is a complex chip which requires exposing many attributes and state. Disable
the warning to work around the error.
pylint: disable=too-many-instance-attributes

[docs]class RFM69:
 """Interface to a RFM69 series packet radio. Allows simple sending and
 receiving of wireless data at supported frequencies of the radio
 (433/915mhz).

 :param busio.SPI spi: The SPI bus connected to the chip. Ensure SCK, MOSI, and MISO are
 connected.
 :param ~digitalio.DigitalInOut cs: A DigitalInOut object connected to the chip's CS/chip select
 line.
 :param ~digitalio.DigitalInOut reset: A DigitalInOut object connected to the chip's RST/reset
 line.
 :param int frequency: The center frequency to configure for radio transmission and reception.
 Must be a frequency supported by your hardware (i.e. either 433 or 915mhz).
 :param bytes sync_word: A byte string up to 8 bytes long which represents the syncronization
 word used by received and transmitted packets. Read the datasheet for a full understanding
 of this value! However by default the library will set a value that matches the RadioHead
 Arduino library.
 :param int preamble_length: The number of bytes to pre-pend to a data packet as a preamble.
 This is by default 4 to match the RadioHead library.
 :param bytes encryption_key: A 16 byte long string that represents the AES encryption key to use
 when encrypting and decrypting packets. Both the transmitter and receiver MUST have the
 same key value! By default no encryption key is set or used.
 :param bool high_power: Indicate if the chip is a high power variant that supports boosted
 transmission power. The default is True as it supports the common RFM69HCW modules sold by
 Adafruit.

 .. note:: The D0/interrupt line is currently unused by this module and can remain unconnected.

 Remember this library makes a best effort at receiving packets with pure Python code. Trying
 to receive packets too quickly will result in lost data so limit yourself to simple scenarios
 of sending and receiving single packets at a time.

 Also note this library tries to be compatible with raw RadioHead Arduino library communication.
 This means the library sets up the radio modulation to match RadioHead's default of GFSK
 encoding, 250kbit/s bitrate, and 250khz frequency deviation. To change this requires explicitly
 setting the radio's bitrate and encoding register bits. Read the datasheet and study the init
 function to see an example of this--advanced users only! Advanced RadioHead features like
 address/node specific packets or "reliable datagram" delivery are supported however due to the
 limitations noted, "reliable datagram" is still subject to missed packets but with it, the
 sender is notified if a packe has potentially been missed.
 """

 # Global buffer for SPI commands.
 _BUFFER = bytearray(4)

 class _RegisterBits:
 # Class to simplify access to the many configuration bits avaialable
 # on the chip's registers. This is a subclass here instead of using
 # a higher level module to increase the efficiency of memory usage
 # (all of the instances of this bit class will share the same buffer
 # used by the parent RFM69 class instance vs. each having their own
 # buffer and taking too much memory).

 # Quirk of pylint that it requires public methods for a class. This
 # is a decorator class in Python and by design it has no public methods.
 # Instead it uses dunder accessors like get and set below. For some
 # reason pylint can't figure this out so disable the check.
 # pylint: disable=too-few-public-methods

 # Again pylint fails to see the true intent of this code and warns
 # against private access by calling the write and read functions below.
 # This is by design as this is an internally used class. Disable the
 # check from pylint.
 # pylint: disable=protected-access

 def __init__(self, address, *, offset=0, bits=1):
 assert 0 <= offset <= 7
 assert 1 <= bits <= 8
 assert (offset + bits) <= 8
 self._address = address
 self._mask = 0
 for _ in range(bits):
 self._mask <<= 1
 self._mask |= 1
 self._mask <<= offset
 self._offset = offset

 def __get__(self, obj, objtype):
 reg_value = obj._read_u8(self._address)
 return (reg_value & self._mask) >> self._offset

 def __set__(self, obj, val):
 reg_value = obj._read_u8(self._address)
 reg_value &= ~self._mask
 reg_value |= (val & 0xFF) << self._offset
 obj._write_u8(self._address, reg_value)

 # Control bits from the registers of the chip:
 data_mode = _RegisterBits(_REG_DATA_MOD, offset=5, bits=2)
 modulation_type = _RegisterBits(_REG_DATA_MOD, offset=3, bits=2)
 modulation_shaping = _RegisterBits(_REG_DATA_MOD, offset=0, bits=2)
 temp_start = _RegisterBits(_REG_TEMP1, offset=3)
 temp_running = _RegisterBits(_REG_TEMP1, offset=2)
 sync_on = _RegisterBits(_REG_SYNC_CONFIG, offset=7)
 sync_size = _RegisterBits(_REG_SYNC_CONFIG, offset=3, bits=3)
 aes_on = _RegisterBits(_REG_PACKET_CONFIG2, offset=0)
 pa_0_on = _RegisterBits(_REG_PA_LEVEL, offset=7)
 pa_1_on = _RegisterBits(_REG_PA_LEVEL, offset=6)
 pa_2_on = _RegisterBits(_REG_PA_LEVEL, offset=5)
 output_power = _RegisterBits(_REG_PA_LEVEL, offset=0, bits=5)
 rx_bw_dcc_freq = _RegisterBits(_REG_RX_BW, offset=5, bits=3)
 rx_bw_mantissa = _RegisterBits(_REG_RX_BW, offset=3, bits=2)
 rx_bw_exponent = _RegisterBits(_REG_RX_BW, offset=0, bits=3)
 afc_bw_dcc_freq = _RegisterBits(_REG_AFC_BW, offset=5, bits=3)
 afc_bw_mantissa = _RegisterBits(_REG_AFC_BW, offset=3, bits=2)
 afc_bw_exponent = _RegisterBits(_REG_AFC_BW, offset=0, bits=3)
 packet_format = _RegisterBits(_REG_PACKET_CONFIG1, offset=7, bits=1)
 dc_free = _RegisterBits(_REG_PACKET_CONFIG1, offset=5, bits=2)
 crc_on = _RegisterBits(_REG_PACKET_CONFIG1, offset=4, bits=1)
 crc_auto_clear_off = _RegisterBits(_REG_PACKET_CONFIG1, offset=3, bits=1)
 address_filter = _RegisterBits(_REG_PACKET_CONFIG1, offset=1, bits=2)
 mode_ready = _RegisterBits(_REG_IRQ_FLAGS1, offset=7)
 dio_0_mapping = _RegisterBits(_REG_DIO_MAPPING1, offset=6, bits=2)

 # pylint: disable=too-many-statements
 def __init__(
 self,
 spi,
 cs,
 reset,
 frequency,
 *,
 sync_word=b"\x2D\xD4",
 preamble_length=4,
 encryption_key=None,
 high_power=True,
 baudrate=2000000
):
 self._tx_power = 13
 self.high_power = high_power
 # Device support SPI mode 0 (polarity & phase = 0) up to a max of 10mhz.
 self._device = spidev.SPIDevice(spi, cs, baudrate=baudrate, polarity=0, phase=0)
 # Setup reset as a digital output that's low.
 self._reset = reset
 self._reset.switch_to_output(value=False)
 self.reset() # Reset the chip.
 # Check the version of the chip.
 version = self._read_u8(_REG_VERSION)
 if version != 0x24:
 raise RuntimeError(
 "Failed to find RFM69 with expected version, check wiring!"
)
 self.idle() # Enter idle state.
 # Setup the chip in a similar way to the RadioHead RFM69 library.
 # Set FIFO TX condition to not empty and the default FIFO threshold to 15.
 self._write_u8(_REG_FIFO_THRESH, 0b10001111)
 # Configure low beta off.
 self._write_u8(_REG_TEST_DAGC, 0x30)
 # Disable boost.
 self._write_u8(_REG_TEST_PA1, _TEST_PA1_NORMAL)
 self._write_u8(_REG_TEST_PA2, _TEST_PA2_NORMAL)
 # Set the syncronization word.
 self.sync_word = sync_word
 self.preamble_length = preamble_length # Set the preamble length.
 self.frequency_mhz = frequency # Set frequency.
 self.encryption_key = encryption_key # Set encryption key.
 # Configure modulation for RadioHead library GFSK_Rb250Fd250 mode
 # by default. Users with advanced knowledge can manually reconfigure
 # for any other mode (consulting the datasheet is absolutely
 # necessary!).
 self.modulation_shaping = 0b01 # Gaussian filter, BT=1.0
 self.bitrate = 250000 # 250kbs
 self.frequency_deviation = 250000 # 250khz
 self.rx_bw_dcc_freq = 0b111 # RxBw register = 0xE0
 self.rx_bw_mantissa = 0b00
 self.rx_bw_exponent = 0b000
 self.afc_bw_dcc_freq = 0b111 # AfcBw register = 0xE0
 self.afc_bw_mantissa = 0b00
 self.afc_bw_exponent = 0b000
 self.packet_format = 1 # Variable length.
 self.dc_free = 0b10 # Whitening
 # Set transmit power to 13 dBm, a safe value any module supports.
 self.tx_power = 13

 # initialize last RSSI reading
 self.last_rssi = 0.0
 """The RSSI of the last received packet. Stored when the packet was received.
 This instantaneous RSSI value may not be accurate once the
 operating mode has been changed.
 """
 # initialize timeouts and delays delays
 self.ack_wait = 0.5
 """The delay time before attempting a retry after not receiving an ACK"""
 self.receive_timeout = 0.5
 """The amount of time to poll for a received packet.
 If no packet is received, the returned packet will be None
 """
 self.xmit_timeout = 2.0
 """The amount of time to wait for the HW to transmit the packet.
 This is mainly used to prevent a hang due to a HW issue
 """
 self.ack_retries = 5
 """The number of ACK retries before reporting a failure."""
 self.ack_delay = None
 """The delay time before attemting to send an ACK.
 If ACKs are being missed try setting this to .1 or .2.
 """
 # initialize sequence number counter for reliabe datagram mode
 self.sequence_number = 0
 # create seen Ids list
 self.seen_ids = bytearray(256)
 # initialize packet header
 # node address - default is broadcast
 self.node = _RH_BROADCAST_ADDRESS
 """The default address of this Node. (0-255).
 If not 255 (0xff) then only packets address to this node will be accepted.
 First byte of the RadioHead header.
 """
 # destination address - default is broadcast
 self.destination = _RH_BROADCAST_ADDRESS
 """The default destination address for packet transmissions. (0-255).
 If 255 (0xff) then any receiving node should accept the packet.
 Second byte of the RadioHead header.
 """
 # ID - contains seq count for reliable datagram mode
 self.identifier = 0
 """Automatically set to the sequence number when send_with_ack() used.
 Third byte of the RadioHead header.
 """
 # flags - identifies ack/reetry packet for reliable datagram mode
 self.flags = 0
 """Upper 4 bits reserved for use by Reliable Datagram Mode.
 Lower 4 bits may be used to pass information.
 Fourth byte of the RadioHead header.
 """

 # pylint: enable=too-many-statements

 # pylint: disable=no-member
 # Reconsider this disable when it can be tested.
 def _read_into(self, address, buf, length=None):
 # Read a number of bytes from the specified address into the provided
 # buffer. If length is not specified (the default) the entire buffer
 # will be filled.
 if length is None:
 length = len(buf)
 with self._device as device:
 self._BUFFER[0] = address & 0x7F # Strip out top bit to set 0
 # value (read).
 device.write(self._BUFFER, end=1)
 device.readinto(buf, end=length)

 def _read_u8(self, address):
 # Read a single byte from the provided address and return it.
 self._read_into(address, self._BUFFER, length=1)
 return self._BUFFER[0]

 def _write_from(self, address, buf, length=None):
 # Write a number of bytes to the provided address and taken from the
 # provided buffer. If no length is specified (the default) the entire
 # buffer is written.
 if length is None:
 length = len(buf)
 with self._device as device:
 self._BUFFER[0] = (address | 0x80) & 0xFF # Set top bit to 1 to
 # indicate a write.
 device.write(self._BUFFER, end=1)
 device.write(buf, end=length) # send data

 def _write_u8(self, address, val):
 # Write a byte register to the chip. Specify the 7-bit address and the
 # 8-bit value to write to that address.
 with self._device as device:
 self._BUFFER[0] = (address | 0x80) & 0xFF # Set top bit to 1 to
 # indicate a write.
 self._BUFFER[1] = val & 0xFF
 device.write(self._BUFFER, end=2)

[docs] def reset(self):
 """Perform a reset of the chip."""
 # See section 7.2.2 of the datasheet for reset description.
 self._reset.value = True
 time.sleep(0.0001) # 100 us
 self._reset.value = False
 time.sleep(0.005) # 5 ms

[docs] def idle(self):
 """Enter idle standby mode (switching off high power amplifiers if necessary)."""
 # Like RadioHead library, turn off high power boost if enabled.
 if self._tx_power >= 18:
 self._write_u8(_REG_TEST_PA1, _TEST_PA1_NORMAL)
 self._write_u8(_REG_TEST_PA2, _TEST_PA2_NORMAL)
 self.operation_mode = STANDBY_MODE

[docs] def sleep(self):
 """Enter sleep mode."""
 self.operation_mode = SLEEP_MODE

[docs] def listen(self):
 """Listen for packets to be received by the chip. Use :py:func:`receive` to listen, wait
 and retrieve packets as they're available.
 """
 # Like RadioHead library, turn off high power boost if enabled.
 if self._tx_power >= 18:
 self._write_u8(_REG_TEST_PA1, _TEST_PA1_NORMAL)
 self._write_u8(_REG_TEST_PA2, _TEST_PA2_NORMAL)
 # Enable payload ready interrupt for D0 line.
 self.dio_0_mapping = 0b01
 # Enter RX mode (will clear FIFO!).
 self.operation_mode = RX_MODE

[docs] def transmit(self):
 """Transmit a packet which is queued in the FIFO. This is a low level function for
 entering transmit mode and more. For generating and transmitting a packet of data use
 :py:func:`send` instead.
 """
 # Like RadioHead library, turn on high power boost if enabled.
 if self._tx_power >= 18:
 self._write_u8(_REG_TEST_PA1, _TEST_PA1_BOOST)
 self._write_u8(_REG_TEST_PA2, _TEST_PA2_BOOST)
 # Enable packet sent interrupt for D0 line.
 self.dio_0_mapping = 0b00
 # Enter TX mode (will clear FIFO!).
 self.operation_mode = TX_MODE

 @property
 def temperature(self):
 """The internal temperature of the chip in degrees Celsius. Be warned this is not
 calibrated or very accurate.

 .. warning:: Reading this will STOP any receiving/sending that might be happening!
 """
 # Start a measurement then poll the measurement finished bit.
 self.temp_start = 1
 while self.temp_running > 0:
 pass
 # Grab the temperature value and convert it to Celsius.
 # This uses the same observed value formula from the Radiohead library.
 temp = self._read_u8(_REG_TEMP2)
 return 166.0 - temp

 @property
 def operation_mode(self):
 """The operation mode value. Unless you're manually controlling the chip you shouldn't
 change the operation_mode with this property as other side-effects are required for
 changing logical modes--use :py:func:`idle`, :py:func:`sleep`, :py:func:`transmit`,
 :py:func:`listen` instead to signal intent for explicit logical modes.
 """
 op_mode = self._read_u8(_REG_OP_MODE)
 return (op_mode >> 2) & 0b111

 @operation_mode.setter
 def operation_mode(self, val):
 assert 0 <= val <= 4
 # Set the mode bits inside the operation mode register.
 op_mode = self._read_u8(_REG_OP_MODE)
 op_mode &= 0b11100011
 op_mode |= val << 2
 self._write_u8(_REG_OP_MODE, op_mode)
 # Wait for mode to change by polling interrupt bit.
 start = time.monotonic()
 while not self.mode_ready:
 if (time.monotonic() - start) >= 1:
 raise TimeoutError("Operation Mode failed to set.")

 @property
 def sync_word(self):
 """The synchronization word value. This is a byte string up to 8 bytes long (64 bits)
 which indicates the synchronization word for transmitted and received packets. Any
 received packet which does not include this sync word will be ignored. The default value
 is 0x2D, 0xD4 which matches the RadioHead RFM69 library. Setting a value of None will
 disable synchronization word matching entirely.
 """
 # Handle when sync word is disabled..
 if not self.sync_on:
 return None
 # Sync word is not disabled so read the current value.
 sync_word_length = self.sync_size + 1 # Sync word size is offset by 1
 # according to datasheet.
 sync_word = bytearray(sync_word_length)
 self._read_into(_REG_SYNC_VALUE1, sync_word)
 return sync_word

 @sync_word.setter
 def sync_word(self, val):
 # Handle disabling sync word when None value is set.
 if val is None:
 self.sync_on = 0
 else:
 # Check sync word is at most 8 bytes.
 assert 1 <= len(val) <= 8
 # Update the value, size and turn on the sync word.
 self._write_from(_REG_SYNC_VALUE1, val)
 self.sync_size = len(val) - 1 # Again sync word size is offset by
 # 1 according to datasheet.
 self.sync_on = 1

 @property
 def preamble_length(self):
 """The length of the preamble for sent and received packets, an unsigned 16-bit value.
 Received packets must match this length or they are ignored! Set to 4 to match the
 RadioHead RFM69 library.
 """
 msb = self._read_u8(_REG_PREAMBLE_MSB)
 lsb = self._read_u8(_REG_PREAMBLE_LSB)
 return ((msb << 8) | lsb) & 0xFFFF

 @preamble_length.setter
 def preamble_length(self, val):
 assert 0 <= val <= 65535
 self._write_u8(_REG_PREAMBLE_MSB, (val >> 8) & 0xFF)
 self._write_u8(_REG_PREAMBLE_LSB, val & 0xFF)

 @property
 def frequency_mhz(self):
 """The frequency of the radio in Megahertz. Only the allowed values for your radio must be
 specified (i.e. 433 vs. 915 mhz)!
 """
 # FRF register is computed from the frequency following the datasheet.
 # See section 6.2 and FRF register description.
 # Read bytes of FRF register and assemble into a 24-bit unsigned value.
 msb = self._read_u8(_REG_FRF_MSB)
 mid = self._read_u8(_REG_FRF_MID)
 lsb = self._read_u8(_REG_FRF_LSB)
 frf = ((msb << 16) | (mid << 8) | lsb) & 0xFFFFFF
 frequency = (frf * _FSTEP) / 1000000.0
 return frequency

 @frequency_mhz.setter
 def frequency_mhz(self, val):
 assert 290 <= val <= 1020
 # Calculate FRF register 24-bit value using section 6.2 of the datasheet.
 frf = int((val * 1000000.0) / _FSTEP) & 0xFFFFFF
 # Extract byte values and update registers.
 msb = frf >> 16
 mid = (frf >> 8) & 0xFF
 lsb = frf & 0xFF
 self._write_u8(_REG_FRF_MSB, msb)
 self._write_u8(_REG_FRF_MID, mid)
 self._write_u8(_REG_FRF_LSB, lsb)

 @property
 def encryption_key(self):
 """The AES encryption key used to encrypt and decrypt packets by the chip. This can be set
 to None to disable encryption (the default), otherwise it must be a 16 byte long byte
 string which defines the key (both the transmitter and receiver must use the same key
 value).
 """
 # Handle if encryption is disabled.
 if self.aes_on == 0:
 return None
 # Encryption is enabled so read the key and return it.
 key = bytearray(16)
 self._read_into(_REG_AES_KEY1, key)
 return key

 @encryption_key.setter
 def encryption_key(self, val):
 # Handle if unsetting the encryption key (None value).
 if val is None:
 self.aes_on = 0
 else:
 # Set the encryption key and enable encryption.
 assert len(val) == 16
 self._write_from(_REG_AES_KEY1, val)
 self.aes_on = 1

 @property
 def tx_power(self):
 """The transmit power in dBm. Can be set to a value from -2 to 20 for high power devices
 (RFM69HCW, high_power=True) or -18 to 13 for low power devices. Only integer power
 levels are actually set (i.e. 12.5 will result in a value of 12 dBm).
 """
 # Follow table 10 truth table from the datasheet for determining power
 # level from the individual PA level bits and output power register.
 pa0 = self.pa_0_on
 pa1 = self.pa_1_on
 pa2 = self.pa_2_on
 if pa0 and not pa1 and not pa2:
 # -18 to 13 dBm range
 return -18 + self.output_power
 if not pa0 and pa1 and not pa2:
 # -2 to 13 dBm range
 return -18 + self.output_power
 if not pa0 and pa1 and pa2 and not self.high_power:
 # 2 to 17 dBm range
 return -14 + self.output_power
 if not pa0 and pa1 and pa2 and self.high_power:
 # 5 to 20 dBm range
 return -11 + self.output_power
 raise RuntimeError("Power amplifiers in unknown state!")

 @tx_power.setter
 def tx_power(self, val):
 val = int(val)
 # Determine power amplifier and output power values depending on
 # high power state and requested power.
 pa_0_on = 0
 pa_1_on = 0
 pa_2_on = 0
 output_power = 0
 if self.high_power:
 # Handle high power mode.
 assert -2 <= val <= 20
 if val <= 13:
 pa_1_on = 1
 output_power = val + 18
 elif 13 < val <= 17:
 pa_1_on = 1
 pa_2_on = 1
 output_power = val + 14
 else: # power >= 18 dBm
 # Note this also needs PA boost enabled separately!
 pa_1_on = 1
 pa_2_on = 1
 output_power = val + 11
 else:
 # Handle non-high power mode.
 assert -18 <= val <= 13
 # Enable only power amplifier 0 and set output power.
 pa_0_on = 1
 output_power = val + 18
 # Set power amplifiers and output power as computed above.
 self.pa_0_on = pa_0_on
 self.pa_1_on = pa_1_on
 self.pa_2_on = pa_2_on
 self.output_power = output_power
 self._tx_power = val

 @property
 def rssi(self):
 """The received strength indicator (in dBm).
 May be inaccuate if not read immediatey. last_rssi contains the value read immediately
 receipt of the last packet.
 """
 # Read RSSI register and convert to value using formula in datasheet.
 return -self._read_u8(_REG_RSSI_VALUE) / 2.0

 @property
 def bitrate(self):
 """The modulation bitrate in bits/second (or chip rate if Manchester encoding is enabled).
 Can be a value from ~489 to 32mbit/s, but see the datasheet for the exact supported
 values.
 """
 msb = self._read_u8(_REG_BITRATE_MSB)
 lsb = self._read_u8(_REG_BITRATE_LSB)
 return _FXOSC / ((msb << 8) | lsb)

 @bitrate.setter
 def bitrate(self, val):
 assert (_FXOSC / 65535) <= val <= 32000000.0
 # Round up to the next closest bit-rate value with addition of 0.5.
 bitrate = int((_FXOSC / val) + 0.5) & 0xFFFF
 self._write_u8(_REG_BITRATE_MSB, bitrate >> 8)
 self._write_u8(_REG_BITRATE_LSB, bitrate & 0xFF)

 @property
 def frequency_deviation(self):
 """The frequency deviation in Hertz."""
 msb = self._read_u8(_REG_FDEV_MSB)
 lsb = self._read_u8(_REG_FDEV_LSB)
 return _FSTEP * ((msb << 8) | lsb)

 @frequency_deviation.setter
 def frequency_deviation(self, val):
 assert 0 <= val <= (_FSTEP * 16383) # fdev is a 14-bit unsigned value
 # Round up to the next closest integer value with addition of 0.5.
 fdev = int((val / _FSTEP) + 0.5) & 0x3FFF
 self._write_u8(_REG_FDEV_MSB, fdev >> 8)
 self._write_u8(_REG_FDEV_LSB, fdev & 0xFF)

[docs] def packet_sent(self):
 """Transmit status"""
 return (self._read_u8(_REG_IRQ_FLAGS2) & 0x8) >> 3

[docs] def payload_ready(self):
 """Receive status"""
 return (self._read_u8(_REG_IRQ_FLAGS2) & 0x4) >> 2

[docs] def send(
 self,
 data,
 *,
 keep_listening=False,
 destination=None,
 node=None,
 identifier=None,
 flags=None
):
 """Send a string of data using the transmitter.
 You can only send 60 bytes at a time
 (limited by chip's FIFO size and appended headers).
 This appends a 4 byte header to be compatible with the RadioHead library.
 The header defaults to using the initialized attributes:
 (destination,node,identifier,flags)
 It may be temporarily overidden via the kwargs - destination,node,identifier,flags.
 Values passed via kwargs do not alter the attribute settings.
 The keep_listening argument should be set to True if you want to start listening
 automatically after the packet is sent. The default setting is False.

 Returns: True if success or False if the send timed out.
 """
 # Disable pylint warning to not use length as a check for zero.
 # This is a puzzling warning as the below code is clearly the most
 # efficient and proper way to ensure a precondition that the provided
 # buffer be within an expected range of bounds. Disable this check.
 # pylint: disable=len-as-condition
 assert 0 < len(data) <= 60
 # pylint: enable=len-as-condition
 self.idle() # Stop receiving to clear FIFO and keep it clear.
 # Fill the FIFO with a packet to send.
 # Combine header and data to form payload
 payload = bytearray(5)
 payload[0] = 4 + len(data)
 if destination is None: # use attribute
 payload[1] = self.destination
 else: # use kwarg
 payload[1] = destination
 if node is None: # use attribute
 payload[2] = self.node
 else: # use kwarg
 payload[2] = node
 if identifier is None: # use attribute
 payload[3] = self.identifier
 else: # use kwarg
 payload[3] = identifier
 if flags is None: # use attribute
 payload[4] = self.flags
 else: # use kwarg
 payload[4] = flags
 payload = payload + data
 # Write payload to transmit fifo
 self._write_from(_REG_FIFO, payload)
 # Turn on transmit mode to send out the packet.
 self.transmit()
 # Wait for packet sent interrupt with explicit polling (not ideal but
 # best that can be done right now without interrupts).
 start = time.monotonic()
 timed_out = False
 while not timed_out and not self.packet_sent():
 if (time.monotonic() - start) >= self.xmit_timeout:
 timed_out = True
 # Listen again if requested.
 if keep_listening:
 self.listen()
 else: # Enter idle mode to stop receiving other packets.
 self.idle()
 return not timed_out

[docs] def send_with_ack(self, data):
 """Reliable Datagram mode:
 Send a packet with data and wait for an ACK response.
 The packet header is automatically generated.
 If enabled, the packet transmission will be retried on failure
 """
 if self.ack_retries:
 retries_remaining = self.ack_retries
 else:
 retries_remaining = 1
 got_ack = False
 self.sequence_number = (self.sequence_number + 1) & 0xFF
 while not got_ack and retries_remaining:
 self.identifier = self.sequence_number
 self.send(data, keep_listening=True)
 # Don't look for ACK from Broadcast message
 if self.destination == _RH_BROADCAST_ADDRESS:
 got_ack = True
 else:
 # wait for a packet from our destination
 ack_packet = self.receive(timeout=self.ack_wait, with_header=True)
 if ack_packet is not None:
 if ack_packet[3] & _RH_FLAGS_ACK:
 # check the ID
 if ack_packet[2] == self.identifier:
 got_ack = True
 break
 # pause before next retry -- random delay
 if not got_ack:
 # delay by random amount before next try
 time.sleep(self.ack_wait + self.ack_wait * random.random())
 retries_remaining = retries_remaining - 1
 # set retry flag in packet header
 self.flags |= _RH_FLAGS_RETRY
 self.flags = 0 # clear flags
 return got_ack

 # pylint: disable=too-many-branches
[docs] def receive(
 self, *, keep_listening=True, with_ack=False, timeout=None, with_header=False
):
 """Wait to receive a packet from the receiver. If a packet is found the payload bytes
 are returned, otherwise None is returned (which indicates the timeout elapsed with no
 reception).
 If keep_listening is True (the default) the chip will immediately enter listening mode
 after reception of a packet, otherwise it will fall back to idle mode and ignore any
 future reception.
 All packets must have a 4 byte header for compatibilty with the
 RadioHead library.
 The header consists of 4 bytes (To,From,ID,Flags). The default setting will strip
 the header before returning the packet to the caller.
 If with_header is True then the 4 byte header will be returned with the packet.
 The payload then begins at packet[4].
 If with_ack is True, send an ACK after receipt (Reliable Datagram mode)
 """
 timed_out = False
 if timeout is None:
 timeout = self.receive_timeout
 if timeout is not None:
 # Wait for the payload_ready signal. This is not ideal and will
 # surely miss or overflow the FIFO when packets aren't read fast
 # enough, however it's the best that can be done from Python without
 # interrupt supports.
 # Make sure we are listening for packets.
 self.listen()
 start = time.monotonic()
 timed_out = False
 while not timed_out and not self.payload_ready():
 if (time.monotonic() - start) >= timeout:
 timed_out = True
 # Payload ready is set, a packet is in the FIFO.
 packet = None
 # save last RSSI reading
 self.last_rssi = self.rssi
 # Enter idle mode to stop receiving other packets.
 self.idle()
 if not timed_out:
 # Read the length of the FIFO.
 fifo_length = self._read_u8(_REG_FIFO)
 # Handle if the received packet is too small to include the 4 byte
 # RadioHead header and at least one byte of data --reject this packet and ignore it.
 if fifo_length > 0: # read and clear the FIFO if anything in it
 packet = bytearray(fifo_length)
 self._read_into(_REG_FIFO, packet, fifo_length)

 if fifo_length < 5:
 packet = None
 else:
 if (
 self.node != _RH_BROADCAST_ADDRESS
 and packet[0] != _RH_BROADCAST_ADDRESS
 and packet[0] != self.node
):
 packet = None
 # send ACK unless this was an ACK or a broadcast
 elif (
 with_ack
 and ((packet[3] & _RH_FLAGS_ACK) == 0)
 and (packet[0] != _RH_BROADCAST_ADDRESS)
):
 # delay before sending Ack to give receiver a chance to get ready
 if self.ack_delay is not None:
 time.sleep(self.ack_delay)
 # send ACK packet to sender (data is b'!')
 self.send(
 b"!",
 destination=packet[1],
 node=packet[0],
 identifier=packet[2],
 flags=(packet[3] | _RH_FLAGS_ACK),
)
 # reject Retries if we have seen this idetifier from this source before
 if (self.seen_ids[packet[1]] == packet[2]) and (
 packet[3] & _RH_FLAGS_RETRY
):
 packet = None
 else: # save the packet identifier for this source
 self.seen_ids[packet[1]] = packet[2]
 if (
 not with_header and packet is not None
): # skip the header if not wanted
 packet = packet[4:]
 # Listen again if necessary and return the result packet.
 if keep_listening:
 self.listen()
 else:
 # Enter idle mode to stop receiving other packets.
 self.idle()
 return packet

 All modules for which code is available

	adafruit_rfm69

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 adafruit_rfm69

 		
 Implementation Notes

_static/up.png

_static/up-pressed.png

