
Adafruit RFM9x Library Documentation
Release 1.0

Tony DiCola

Feb 10, 2021

Contents

1 Dependencies 3

2 Installing from PyPI 5

3 Usage Example 7

4 Contributing 9

5 Documentation 11

6 Table of Contents 13
6.1 Simple test . 13
6.2 adafruit_rfm9x . 15

7 Indices and tables 19

Python Module Index 21

Index 23

i

ii

Adafruit RFM9x Library Documentation, Release 1.0

CircuitPython module for the RFM95/6/7/8 LoRa 433/915mhz radio modules.

Contents 1

https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/
https://adafru.it/discord
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/actions/

Adafruit RFM9x Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Dependencies

This driver depends on:

• Adafruit CircuitPython

• Bus Device

Please ensure all dependencies are available on the CircuitPython filesystem. This is easily achieved by downloading
the Adafruit library and driver bundle.

3

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

Adafruit RFM9x Library Documentation, Release 1.0

4 Chapter 1. Dependencies

CHAPTER 2

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from PyPI. To install for
current user:

pip3 install adafruit-circuitpython-rfm9x

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-rfm9x

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-rfm9x

5

https://pypi.org/project/adafruit-circuitpython-rfm9x/

Adafruit RFM9x Library Documentation, Release 1.0

6 Chapter 2. Installing from PyPI

CHAPTER 3

Usage Example

Initialization of the RFM radio requires specifying a frequency appropriate to your radio hardware (i.e. 868-915 or
433 MHz) and specifying the pins used in your wiring from the controller board to the radio module.

This example code matches the wiring used in the LoRa and LoRaWAN Radio for Raspberry Pi project:

import digitalio
import board
import busio
import adafruit_rfm9x

RADIO_FREQ_MHZ = 915.0
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

Note: the default baudrate for the SPI is 50000000 (5MHz). The maximum setting is 10Mhz but transmission errors
have been observed expecially when using breakout boards. For breakout boards or other configurations where the
boards are separated, it may be necessary to reduce the baudrate for reliable data transmission. The baud rate may be
specified as an keyword parameter when initializing the board. To set it to 1000000 use :

Initialze RFM radio with a more conservative baudrate
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ, baudrate=1000000)

Optional controls exist to alter the signal bandwidth, coding rate, and spreading factor settings used by the ra-
dio to achieve better performance in different environments. By default, settings compatible with RadioHead
Bw125Cr45Sf128 mode are used, which can be altered in the following manner (continued from the above exam-
ple):

Apply new modem config settings to the radio to improve its effective range
rfm9x.signal_bandwidth = 62500
rfm9x.coding_rate = 6
rfm9x.spreading_factor = 8
rfm9x.enable_crc = True

7

https://learn.adafruit.com/lora-and-lorawan-radio-for-raspberry-pi/

Adafruit RFM9x Library Documentation, Release 1.0

See examples/rfm9x_simpletest.py for an expanded demo of the usage.

8 Chapter 3. Usage Example

CHAPTER 4

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

9

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/CODE_OF_CONDUCT.md

Adafruit RFM9x Library Documentation, Release 1.0

10 Chapter 4. Contributing

CHAPTER 5

Documentation

For information on building library documentation, please check out this guide.

11

https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1

Adafruit RFM9x Library Documentation, Release 1.0

12 Chapter 5. Documentation

CHAPTER 6

Table of Contents

6.1 Simple test

Ensure your device works with this simple test.

Listing 1: examples/rfm9x_simpletest.py

1 # SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3

4 # Simple demo of sending and recieving data with the RFM95 LoRa radio.
5 # Author: Tony DiCola
6 import board
7 import busio
8 import digitalio
9

10 import adafruit_rfm9x
11

12

13 # Define radio parameters.
14 RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
15 # module! Can be a value like 915.0, 433.0, etc.
16

17 # Define pins connected to the chip, use these if wiring up the breakout according to
→˓the guide:

18 CS = digitalio.DigitalInOut(board.D5)
19 RESET = digitalio.DigitalInOut(board.D6)
20 # Or uncomment and instead use these if using a Feather M0 RFM9x board and the

→˓appropriate
21 # CircuitPython build:
22 # CS = digitalio.DigitalInOut(board.RFM9X_CS)
23 # RESET = digitalio.DigitalInOut(board.RFM9X_RST)
24

25 # Define the onboard LED

(continues on next page)

13

Adafruit RFM9x Library Documentation, Release 1.0

(continued from previous page)

26 LED = digitalio.DigitalInOut(board.D13)
27 LED.direction = digitalio.Direction.OUTPUT
28

29 # Initialize SPI bus.
30 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
31

32 # Initialze RFM radio
33 rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)
34

35 # Note that the radio is configured in LoRa mode so you can't control sync
36 # word, encryption, frequency deviation, or other settings!
37

38 # You can however adjust the transmit power (in dB). The default is 13 dB but
39 # high power radios like the RFM95 can go up to 23 dB:
40 rfm9x.tx_power = 23
41

42 # Send a packet. Note you can only send a packet up to 252 bytes in length.
43 # This is a limitation of the radio packet size, so if you need to send larger
44 # amounts of data you will need to break it into smaller send calls. Each send
45 # call will wait for the previous one to finish before continuing.
46 rfm9x.send(bytes("Hello world!\r\n", "utf-8"))
47 print("Sent Hello World message!")
48

49 # Wait to receive packets. Note that this library can't receive data at a fast
50 # rate, in fact it can only receive and process one 252 byte packet at a time.
51 # This means you should only use this for low bandwidth scenarios, like sending
52 # and receiving a single message at a time.
53 print("Waiting for packets...")
54

55 while True:
56 packet = rfm9x.receive()
57 # Optionally change the receive timeout from its default of 0.5 seconds:
58 # packet = rfm9x.receive(timeout=5.0)
59 # If no packet was received during the timeout then None is returned.
60 if packet is None:
61 # Packet has not been received
62 LED.value = False
63 print("Received nothing! Listening again...")
64 else:
65 # Received a packet!
66 LED.value = True
67 # Print out the raw bytes of the packet:
68 print("Received (raw bytes): {0}".format(packet))
69 # And decode to ASCII text and print it too. Note that you always
70 # receive raw bytes and need to convert to a text format like ASCII
71 # if you intend to do string processing on your data. Make sure the
72 # sending side is sending ASCII data before you try to decode!
73 packet_text = str(packet, "ascii")
74 print("Received (ASCII): {0}".format(packet_text))
75 # Also read the RSSI (signal strength) of the last received message and
76 # print it.
77 rssi = rfm9x.last_rssi
78 print("Received signal strength: {0} dB".format(rssi))

14 Chapter 6. Table of Contents

Adafruit RFM9x Library Documentation, Release 1.0

6.2 adafruit_rfm9x

CircuitPython module for the RFM95/6/7/8 LoRa 433/915mhz radio modules. This is adapted from the Radiohead
library RF95 code from: http: www.airspayce.com/mikem/arduino/RadioHead/

• Author(s): Tony DiCola, Jerry Needell

class adafruit_rfm9x.RFM9x(spi, cs, reset, frequency, *, preamble_length=8, high_power=True,
baudrate=5000000, agc=False)

Interface to a RFM95/6/7/8 LoRa radio module. Allows sending and receivng bytes of data in long range LoRa
mode at a support board frequency (433/915mhz).

You must specify the following parameters: - spi: The SPI bus connected to the radio. - cs: The CS pin
DigitalInOut connected to the radio. - reset: The reset/RST pin DigialInOut connected to the radio. - frequency:
The frequency (in mhz) of the radio module (433/915mhz typically).

You can optionally specify: - preamble_length: The length in bytes of the packet preamble (default 8). -
high_power: Boolean to indicate a high power board (RFM95, etc.). Default is True for high power. - baudrate:
Baud rate of the SPI connection, default is 10mhz but you might choose to lower to 1mhz if using long wires or
a breadboard. - agc: Boolean to Enable/Disable Automatic Gain Control - Default=False (AGC off) Remember
this library makes a best effort at receiving packets with pure Python code. Trying to receive packets too quickly
will result in lost data so limit yourself to simple scenarios of sending and receiving single packets at a time.

Also note this library tries to be compatible with raw RadioHead Arduino library communication. This means
the library sets up the radio modulation to match RadioHead’s defaults and assumes that each packet contains a
4 byte header compatible with RadioHead’s implementation. Advanced RadioHead features like address/node
specific packets or “reliable datagram” delivery are supported however due to the limitations noted, “reliable
datagram” is still subject to missed packets but with it, sender is notified if a packet has potentially been missed.

ack_delay = None
The delay time before attemting to send an ACK. If ACKs are being missed try setting this to .1 or .2.

ack_retries = None
The number of ACK retries before reporting a failure.

ack_wait = None
The delay time before attempting a retry after not receiving an ACK

auto_agc
Automatic Gain Control state

coding_rate
The coding rate used by the radio to control forward error correction (try setting to a higher value to
increase tolerance of short bursts of interference or to a lower value to increase bit rate). Valid values are
limited to 5, 6, 7, or 8.

crc_error()
crc status

destination = None
The default destination address for packet transmissions. (0-255). If 255 (0xff) then any receiving node
should accept the packet. Second byte of the RadioHead header.

enable_crc
Set to True to enable hardware CRC checking of incoming packets. Incoming packets that fail the CRC
check are not processed. Set to False to disable CRC checking and process all incoming packets.

flags = None
Upper 4 bits reserved for use by Reliable Datagram Mode. Lower 4 bits may be used to pass information.

6.2. adafruit_rfm9x 15

Adafruit RFM9x Library Documentation, Release 1.0

Fourth byte of the RadioHead header.

frequency_mhz
The frequency of the radio in Megahertz. Only the allowed values for your radio must be specified (i.e.
433 vs. 915 mhz)!

identifier = None
Automatically set to the sequence number when send_with_ack() used. Third byte of the RadioHead
header.

idle()
Enter idle standby mode.

last_rssi = None
The RSSI of the last received packet. Stored when the packet was received. The instantaneous RSSI value
may not be accurate once the operating mode has been changed.

last_snr = None
The SNR of the last received packet. Stored when the packet was received. The instantaneous SNR value
may not be accurate once the operating mode has been changed.

listen()
Listen for packets to be received by the chip. Use receive() to listen, wait and retrieve packets as
they’re available.

node = None
The default address of this Node. (0-255). If not 255 (0xff) then only packets address to this node will be
accepted. First byte of the RadioHead header.

preamble_length
The length of the preamble for sent and received packets, an unsigned 16-bit value. Received packets must
match this length or they are ignored! Set to 8 to match the RadioHead RFM95 library.

receive(*, keep_listening=True, with_header=False, with_ack=False, timeout=None)
Wait to receive a packet from the receiver. If a packet is found the payload bytes are returned, otherwise
None is returned (which indicates the timeout elapsed with no reception). If keep_listening is True (the
default) the chip will immediately enter listening mode after reception of a packet, otherwise it will fall
back to idle mode and ignore any future reception. All packets must have a 4-byte header for compatibilty
with the RadioHead library. The header consists of 4 bytes (To,From,ID,Flags). The default setting will
strip the header before returning the packet to the caller. If with_header is True then the 4 byte header will
be returned with the packet. The payload then begins at packet[4]. If with_ack is True, send an ACK after
receipt (Reliable Datagram mode)

receive_timeout = None
The amount of time to poll for a received packet. If no packet is received, the returned packet will be None

reset()
Perform a reset of the chip.

rssi
The received strength indicator (in dBm) of the last received message.

rx_done()
Receive status

send(data, *, keep_listening=False, destination=None, node=None, identifier=None, flags=None)
Send a string of data using the transmitter. You can only send 252 bytes at a time (limited by chip’s
FIFO size and appended headers). This appends a 4 byte header to be compatible with the RadioHead
library. The header defaults to using the initialized attributes: (destination,node,identifier,flags) It may be
temporarily overidden via the kwargs - destination,node,identifier,flags. Values passed via kwargs do not

16 Chapter 6. Table of Contents

Adafruit RFM9x Library Documentation, Release 1.0

alter the attribute settings. The keep_listening argument should be set to True if you want to start listening
automatically after the packet is sent. The default setting is False.

Returns: True if success or False if the send timed out.

send_with_ack(data)
Reliable Datagram mode: Send a packet with data and wait for an ACK response. The packet header is
automatically generated. If enabled, the packet transmission will be retried on failure

signal_bandwidth
The signal bandwidth used by the radio (try setting to a higher value to increase throughput or to a
lower value to increase the likelihood of successfully received payloads). Valid values are listed in
RFM9x.bw_bins.

sleep()
Enter sleep mode.

snr
The SNR (in dB) of the last received message.

spreading_factor
The spreading factor used by the radio (try setting to a higher value to increase the receiver’s ability to
distinguish signal from noise or to a lower value to increase the data transmission rate). Valid values are
limited to 6, 7, 8, 9, 10, 11, or 12.

transmit()
Transmit a packet which is queued in the FIFO. This is a low level function for entering transmit mode and
more. For generating and transmitting a packet of data use send() instead.

tx_done()
Transmit status

tx_power
The transmit power in dBm. Can be set to a value from 5 to 23 for high power devices (RFM95/96/97/98,
high_power=True) or -1 to 14 for low power devices. Only integer power levels are actually set (i.e. 12.5
will result in a value of 12 dBm). The actual maximum setting for high_power=True is 20dBm but for
values > 20 the PA_BOOST will be enabled resulting in an additional gain of 3dBm. The actual setting is
reduced by 3dBm. The reported value will reflect the reduced setting.

xmit_timeout = None
The amount of time to wait for the HW to transmit the packet. This is mainly used to prevent a hang due
to a HW issue

6.2. adafruit_rfm9x 17

Adafruit RFM9x Library Documentation, Release 1.0

18 Chapter 6. Table of Contents

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19

Adafruit RFM9x Library Documentation, Release 1.0

20 Chapter 7. Indices and tables

Python Module Index

a
adafruit_rfm9x, 14

21

Adafruit RFM9x Library Documentation, Release 1.0

22 Python Module Index

Index

A
ack_delay (adafruit_rfm9x.RFM9x attribute), 15
ack_retries (adafruit_rfm9x.RFM9x attribute), 15
ack_wait (adafruit_rfm9x.RFM9x attribute), 15
adafruit_rfm9x (module), 14
auto_agc (adafruit_rfm9x.RFM9x attribute), 15

C
coding_rate (adafruit_rfm9x.RFM9x attribute), 15
crc_error() (adafruit_rfm9x.RFM9x method), 15

D
destination (adafruit_rfm9x.RFM9x attribute), 15

E
enable_crc (adafruit_rfm9x.RFM9x attribute), 15

F
flags (adafruit_rfm9x.RFM9x attribute), 15
frequency_mhz (adafruit_rfm9x.RFM9x attribute),

16

I
identifier (adafruit_rfm9x.RFM9x attribute), 16
idle() (adafruit_rfm9x.RFM9x method), 16

L
last_rssi (adafruit_rfm9x.RFM9x attribute), 16
last_snr (adafruit_rfm9x.RFM9x attribute), 16
listen() (adafruit_rfm9x.RFM9x method), 16

N
node (adafruit_rfm9x.RFM9x attribute), 16

P
preamble_length (adafruit_rfm9x.RFM9x at-

tribute), 16

R
receive() (adafruit_rfm9x.RFM9x method), 16
receive_timeout (adafruit_rfm9x.RFM9x at-

tribute), 16
reset() (adafruit_rfm9x.RFM9x method), 16
RFM9x (class in adafruit_rfm9x), 15
rssi (adafruit_rfm9x.RFM9x attribute), 16
rx_done() (adafruit_rfm9x.RFM9x method), 16

S
send() (adafruit_rfm9x.RFM9x method), 16
send_with_ack() (adafruit_rfm9x.RFM9x method),

17
signal_bandwidth (adafruit_rfm9x.RFM9x at-

tribute), 17
sleep() (adafruit_rfm9x.RFM9x method), 17
snr (adafruit_rfm9x.RFM9x attribute), 17
spreading_factor (adafruit_rfm9x.RFM9x at-

tribute), 17

T
transmit() (adafruit_rfm9x.RFM9x method), 17
tx_done() (adafruit_rfm9x.RFM9x method), 17
tx_power (adafruit_rfm9x.RFM9x attribute), 17

X
xmit_timeout (adafruit_rfm9x.RFM9x attribute), 17

23

	Dependencies
	Installing from PyPI
	Usage Example
	Contributing
	Documentation
	Table of Contents
	Simple test
	adafruit_rfm9x

	Indices and tables
	Python Module Index
	Index

