AdafruitSI5351 Library Documentation

Release 1.0

Tony DiCola

Jan 15, 2019

Contents

1 Dependencies 3
2 Usage Example 5
3 Contributing 7
4 Building locally 9
4.1 Ziprelease files e e e e e e e e e 9
4.2 Sphinx documentation e e e 9
5 Table of Contents 1
5.1 Simpletesto e e e e e e e e e e e e e 11
5.2 adafrult_siBS351 e e e e e 12
6 Indices and tables 15
Python Module Index 17

AdafruitSI5351 Library Documentation, Release 1.0

SI5351 clock generator module.

Contents 1

https://circuitpython.readthedocs.io/projects/si5351/en/latest/
https://discord.gg/nBQh6qu
https://travis-ci.com/adafruit/Adafruit_CircuitPython_SI5351

AdafruitSI5351 Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Dependencies

This driver depends on:
¢ Adafruit CircuitPython
* Bus Device

Please ensure all dependencies are available on the CircuitPython filesystem. This is easily achieved by downloading
the Adafruit library and driver bundle.

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

AdafruitSI5351 Library Documentation, Release 1.0

4 Chapter 1. Dependencies

CHAPTER 2

Usage Example

See examples/simpletest.py for a demo of the usage.

AdafruitSI5351 Library Documentation, Release 1.0

6 Chapter 2. Usage Example

CHAPTER 3

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

https://github.com/adafruit/Adafruit_CircuitPython_SI5351/blob/master/CODE_OF_CONDUCT.md

AdafruitSI5351 Library Documentation, Release 1.0

8 Chapter 3. Contributing

CHAPTER 4

Building locally

4.1 Zip release files

To build this library locally you’ll need to install the circuitpython-build-tools package.

python3 -m venv .env
source .env/bin/activate
pip install circuitpython-build-tools

Once installed, make sure you are in the virtual environment:

source .env/bin/activate

Then run the build:

circuitpython-build-bundles --filename_prefix adafruit-circuitpython-si5351 —--library_
—~location

4.2 Sphinx documentation

Sphinx is used to build the documentation based on rST files and comments in the code. First, install dependencies
(feel free to reuse the virtual environment from above):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-rtd-theme

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build/html

https://github.com/adafruit/circuitpython-build-tools

AdafruitSI5351 Library Documentation, Release 1.0

This will output the documentation to docs/_build/html. Open the index.html in your browser to view them. It
will also (due to -W) error out on any warning like Travis will. This is a good way to locally verify it will pass.

10 Chapter 4. Building locally

20

21

22

23

24

25

26

CHAPTER B

Table of Contents

5.1 Simple test

Ensure your device works with this simple test.

Listing 1: examples/simpletest.py

Simple demo of the SI5351 clock generator.

This is like the Arduino library example:

https://github.com/adafruit/Adafruit_Si5351_Library/blob/master/examples/si5351/

—~s515351.1ino

Which will configure the chip with:

— PLL A at 900mhz

- PLL B at 616.66667mhz

- Clock 0 at 112.5mhz, using PLL A as a source divided by 8

- Clock 1 at 13.553115mhz, using PLL B as a source divided by 45.5

- Clock 2 at 10.76khz, using PLL B as a source divided by 900 and further
divided with an R divider of 64.

import board

import busio

S W W R H

import adafruit_si5351

Initialize I2C bus.
i2c = busio.I2C(board.SCL, board.SDA)

Initialize SI5351.

si5351 = adafruit_sib5351.SI5351 (i2c)

Alternatively you can specify the I2C address if it has been changed:
#s515351 = adafruit_sib5351.SI5351 (i2c, address=0x61)

Now configue the PLLs and clock outputs.
The PLLs can be configured with a multiplier and division of the on-board

(continues on next page)

11

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

AdafruitSI5351 Library Documentation, Release 1.0

(continued from previous page)

25mhz reference crystal. For example configure PLL A to 900mhz by multiplying
by 36. This uses an integer multiplier which is more accurate over time

but allows less of a range of frequencies compared to a fractional

multiplier shown next.

si5351.pll_a.configure_integer (36) # Multiply 2b5mhz by 36

print ('"PLL A frequency: {0/mhz'.format (si5351.pll_a.frequency/1000000))

And next configure PLL B to 616.6667mhz by multiplying 25mhz by 24.667 using
the fractional multiplier configuration. Notice you specify the integer
multiplier and then a numerator and denominator as separate values, i.e.
numerator 2 and denominator 3 means 2/3 or 0.667. This fractional
configuration is susceptible to some jitter over time but can set a larger

range of frequencies.

si5351.pll_b.configure_fractional (24, 2, 3) # Multiply 25mhz by 24.667 (24 2/3)
print ('"PLL B frequency: {0/mhz'.format (si5351.pll_b.frequency/1000000))

HH W R R W

Now configure the clock outputs. Each is driven by a PLL frequency as input
and then further divides that down to a specific frequency.

Configure clock 0 output to be driven by PLL A divided by 8, so an output

of 112.5mhz (900mhz / 8). Again this uses the most precise integer division
but can't set as wide a range of values.

si5351.clock_O.configure_integer (si5351.pll_a, 8)

print ("Clock 0: {0}mhz'.format (si5351.clock_0.frequency/1000000))

H W R

Next configure clock 1 to be driven by PLL B divided by 45.5 to get

13.5531mhz (616.6667mhz / 45.5). This uses fractional division and again

notice the numerator and denominator are explicitly specified. This is less

precise but allows a large range of frequencies.
si5351.clock_1.configure_fractional (si5351.pll_b, 45, 1, 2) # Divide by 45.5 (45 1/2)
print ("Clock 1: {0}mhz'.format (si5351.clock_1.frequency/1000000))

Finally configure clock 2 to be driven by PLL B divided once by 900 to get
down to 685.15 khz and then further divided by a special R divider that
divides 685.15 khz by 64 to get a final output of 10.706khz.
s1i5351.clock_2.configure_integer (si5351.pll_b, 900)

Set the R divider, this can be a value of:

— R DIV 1: divider of 1

- R DIV _2: divider of 2

— R DIV 4: divider of 4

- R DIV _8: divider of 8

- R DIV _16: divider of 16

- R DIV _32: divider of 32

- R DIV _64: divider of 64

- R DIV _128: divider of 128

si5351.clock_2.r_divider = adafruit_si5351.R_DIV_64

print ('Clock 2: {0}khz'.format (si5351.clock_2.frequency/1000))

HH H W R W

After configuring PLLs and clocks, enable the outputs.
s15351.outputs_enabled = True
You can disable them by setting false.

5.2 adafruit sib5351

CircuitPython module to control the SIS351 clock generator. See examples/simpletest.py for a demo of the usage.
This is based on the Arduino library at: https://github.com/adafruit/Adafruit_Si5351_Library/

12 Chapter 5. Table of Contents

https://github.com/adafruit/Adafruit_Si5351_Library/

AdafruitSI5351 Library Documentation, Release 1.0

* Author(s): Tony DiCola
class adafruit_si5351.8I5351 (i2c, *, address=96)
SI5351 clock generator. Initialize this class by specifying:
¢ i2c: The I2C bus connected to the chip.
Optionally specify:
* address: The I2C address of the device if it differs from the default.

outputs_enabled
Get and set the enabled state of all clock outputs as a boolean. If true then all clock outputs are enabled,
and if false then they are all disabled.

5.2. adafruit_si5351 13

AdafruitSI5351 Library Documentation, Release 1.0

14 Chapter 5. Table of Contents

CHAPTER O

Indices and tables

* genindex
* modindex

e search

15

AdafruitSI5351 Library Documentation, Release 1.0

16 Chapter 6. Indices and tables

Python Module Index

a
adafruit_si5351, 12

17

AdafruitSI5351 Library Documentation, Release 1.0

18 Python Module Index

Index

A

adafruit_si5351 (module), 12

O

outputs_enabled (adafruit_si5351.SI5351 attribute), 13

S

SI15351 (class in adafruit_si5351), 13

19

	Dependencies
	Usage Example
	Contributing
	Building locally
	Zip release files
	Sphinx documentation

	Table of Contents
	Simple test
	adafruit_si5351

	Indices and tables
	Python Module Index

