

Introduction

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/si5351/en/latest/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_SI5351/actions/]SI5351 clock generator module.

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

	Bus Device [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-si5351/]. To install for current user:

pip3 install adafruit-circuitpython-si5351

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-si5351

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-si5351

Usage Example

See examples/simpletest.py for a demo of the usage.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_SI5351/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

API Reference

	adafruit_si5351

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_SI5351/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/si5351_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

	# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of the SI5351 clock generator.
This is like the Arduino library example:
https://github.com/adafruit/Adafruit_Si5351_Library/blob/master/examples/si5351/si5351.ino
Which will configure the chip with:
- PLL A at 900mhz
- PLL B at 616.66667mhz
- Clock 0 at 112.5mhz, using PLL A as a source divided by 8
- Clock 1 at 13.553115mhz, using PLL B as a source divided by 45.5
- Clock 2 at 10.76khz, using PLL B as a source divided by 900 and further
divided with an R divider of 64.
import board
import busio

import adafruit_si5351

Initialize I2C bus.
i2c = busio.I2C(board.SCL, board.SDA)

Initialize SI5351.
si5351 = adafruit_si5351.SI5351(i2c)
Alternatively you can specify the I2C address if it has been changed:
si5351 = adafruit_si5351.SI5351(i2c, address=0x61)

Now configue the PLLs and clock outputs.
The PLLs can be configured with a multiplier and division of the on-board
25mhz reference crystal. For example configure PLL A to 900mhz by multiplying
by 36. This uses an integer multiplier which is more accurate over time
but allows less of a range of frequencies compared to a fractional
multiplier shown next.
si5351.pll_a.configure_integer(36) # Multiply 25mhz by 36
print("PLL A frequency: {0}mhz".format(si5351.pll_a.frequency / 1000000))

And next configure PLL B to 616.6667mhz by multiplying 25mhz by 24.667 using
the fractional multiplier configuration. Notice you specify the integer
multiplier and then a numerator and denominator as separate values, i.e.
numerator 2 and denominator 3 means 2/3 or 0.667. This fractional
configuration is susceptible to some jitter over time but can set a larger
range of frequencies.
si5351.pll_b.configure_fractional(24, 2, 3) # Multiply 25mhz by 24.667 (24 2/3)
print("PLL B frequency: {0}mhz".format(si5351.pll_b.frequency / 1000000))

Now configure the clock outputs. Each is driven by a PLL frequency as input
and then further divides that down to a specific frequency.
Configure clock 0 output to be driven by PLL A divided by 8, so an output
of 112.5mhz (900mhz / 8). Again this uses the most precise integer division
but can't set as wide a range of values.
si5351.clock_0.configure_integer(si5351.pll_a, 8)
print("Clock 0: {0}mhz".format(si5351.clock_0.frequency / 1000000))

Next configure clock 1 to be driven by PLL B divided by 45.5 to get
13.5531mhz (616.6667mhz / 45.5). This uses fractional division and again
notice the numerator and denominator are explicitly specified. This is less
precise but allows a large range of frequencies.
si5351.clock_1.configure_fractional(si5351.pll_b, 45, 1, 2) # Divide by 45.5 (45 1/2)
print("Clock 1: {0}mhz".format(si5351.clock_1.frequency / 1000000))

Finally configure clock 2 to be driven by PLL B divided once by 900 to get
down to 685.15 khz and then further divided by a special R divider that
divides 685.15 khz by 64 to get a final output of 10.706khz.
si5351.clock_2.configure_integer(si5351.pll_b, 900)
Set the R divider, this can be a value of:
- R_DIV_1: divider of 1
- R_DIV_2: divider of 2
- R_DIV_4: divider of 4
- R_DIV_8: divider of 8
- R_DIV_16: divider of 16
- R_DIV_32: divider of 32
- R_DIV_64: divider of 64
- R_DIV_128: divider of 128
si5351.clock_2.r_divider = adafruit_si5351.R_DIV_64
print("Clock 2: {0}khz".format(si5351.clock_2.frequency / 1000))

After configuring PLLs and clocks, enable the outputs.
si5351.outputs_enabled = True
You can disable them by setting false.

adafruit_si5351

CircuitPython module to control the SI5351 clock generator. See
examples/simpletest.py for a demo of the usage. This is based on the Arduino
library at: https://github.com/adafruit/Adafruit_Si5351_Library/

	Author(s): Tony DiCola

	
class adafruit_si5351.SI5351(i2c, *, address=96)

	
	SI5351 clock generator. Initialize this class by specifying:

	
	i2c: The I2C bus connected to the chip.

	Optionally specify:

	
	address: The I2C address of the device if it differs from the default.

	
outputs_enabled

	Get and set the enabled state of all clock outputs as a boolean.
If true then all clock outputs are enabled, and if false then they are
all disabled.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 adafruit_si5351	

Index

 A
 | O
 | S

A

 	
 	adafruit_si5351 (module)

O

 	
 	outputs_enabled (adafruit_si5351.SI5351 attribute)

S

 	
 	SI5351 (class in adafruit_si5351)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 adafruit_si5351

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

