

Introduction

[image: Documentation Status]
 [https://adafruit_circuitpython_thermal_printer.readthedocs.io/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer/actions/]CircuitPython module for control of various small serial thermal printers.

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-thermal_printer/]. To install for current user:

pip3 install adafruit-circuitpython-thermal_printer

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-thermal_printer

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-thermal_printer

Usage Example

See examples/thermal_printer_simpletest.py for a demo of basic printer usage.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

API Reference

	adafruit_thermal_printer.thermal_printer - Thermal Printer Driver
	Implementation Notes

	adafruit_thermal_printer.thermal_printer_264.ThermalPrinter

	adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter

Related Products

	Mini Thermal Receipt Printer [https://www.adafruit.com/product/597]

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/thermal_printer_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

	# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of printer functionality.
Author: Tony DiCola
import board
import busio

import adafruit_thermal_printer

Pick which version thermal printer class to use depending on the version of
your printer. Hold the button on the printer as it's powered on and it will
print a test page that displays the firmware version, like 2.64, 2.68, etc.
Use this version in the get_printer_class function below.
ThermalPrinter = adafruit_thermal_printer.get_printer_class(2.69)

Define RX and TX pins for the board's serial port connected to the printer.
Only the TX pin needs to be configued, and note to take care NOT to connect
the RX pin if your board doesn't support 5V inputs. If RX is left unconnected
the only loss in functionality is checking if the printer has paper--all other
functions of the printer will work.
RX = board.RX
TX = board.TX

Create a serial connection for the printer. You must use the same baud rate
as your printer is configured (print a test page by holding the button
during power-up and it will show the baud rate). Most printers use 19200.
uart = busio.UART(TX, RX, baudrate=19200)

For a computer, use the pyserial library for uart access.
import serial
uart = serial.Serial("/dev/serial0", baudrate=19200, timeout=3000)

Create the printer instance.
printer = ThermalPrinter(uart, auto_warm_up=False)

Initialize the printer. Note this will take a few seconds for the printer
to warm up and be ready to accept commands (hence calling it explicitly vs.
automatically in the initializer with the default auto_warm_up=True).
printer.warm_up()

Check if the printer has paper. This only works if the RX line is connected
on your board (but BE CAREFUL as mentioned above this RX line is 5V!)
if printer.has_paper():
 print("Printer has paper!")
else:
 print("Printer might be out of paper, or RX is disconnected!")

Print a test page:
printer.test_page()

Move the paper forward two lines:
printer.feed(2)

Print a line of text:
printer.print("Hello world!")

Print a bold line of text:
printer.bold = True
printer.print("Bold hello world!")
printer.bold = False

Print a normal/thin underline line of text:
printer.underline = adafruit_thermal_printer.UNDERLINE_THIN
printer.print("Thin underline!")

Print a thick underline line of text:
printer.underline = adafruit_thermal_printer.UNDERLINE_THICK
printer.print("Thick underline!")

Disable underlines.
printer.underline = None

Print an inverted line.
printer.inverse = True
printer.print("Inverse hello world!")
printer.inverse = False

Print an upside down line.
printer.upside_down = True
printer.print("Upside down hello!")
printer.upside_down = False

Print a double height line.
printer.double_height = True
printer.print("Double height!")
printer.double_height = False

Print a double width line.
printer.double_width = True
printer.print("Double width!")
printer.double_width = False

Print a strike-through line.
printer.strike = True
printer.print("Strike-through hello!")
printer.strike = False

Print medium size text.
printer.size = adafruit_thermal_printer.SIZE_MEDIUM
printer.print("Medium size text!")

Print large size text.
printer.size = adafruit_thermal_printer.SIZE_LARGE
printer.print("Large size text!")

Back to normal / small size text.
printer.size = adafruit_thermal_printer.SIZE_SMALL

Print center justified text.
printer.justify = adafruit_thermal_printer.JUSTIFY_CENTER
printer.print("Center justified!")

Print right justified text.
printer.justify = adafruit_thermal_printer.JUSTIFY_RIGHT
printer.print("Right justified!")

Back to left justified / normal text.
printer.justify = adafruit_thermal_printer.JUSTIFY_LEFT

Print a UPC barcode.
printer.print("UPCA barcode:")
printer.print_barcode("123456789012", printer.UPC_A)

Feed a few lines to see everything.
printer.feed(2)

adafruit_thermal_printer.thermal_printer - Thermal Printer Driver

Thermal printer control module built to work with small serial thermal
receipt printers. Note that these printers have many different firmware
versions and care must be taken to select the appropriate module inside this
package for your firmware printer:

	thermal_printer = The latest printers with firmware version 2.68+

	thermal_printer_264 = Printers with firmware version 2.64 up to 2.68.

	thermal_printer_legacy = Printers with firmware version before 2.64.

	Author(s): Tony DiCola

Implementation Notes

Hardware:

	Mini Thermal Receipt Printer [https://www.adafruit.com/product/597] (Product ID: 597)

Software and Dependencies:

	Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
https://github.com/adafruit/circuitpython/releases

	
class adafruit_thermal_printer.thermal_printer.ThermalPrinter(uart, *, byte_delay_s=0.00057346, dot_feed_s=0.0021, dot_print_s=0.03, auto_warm_up=True)[source]

	Thermal printer for printers with firmware version from 2.68 and below 2.168

	
feed(lines)[source]

	Advance paper by specified number of blank lines.

	
feed_rows(rows)[source]

	Advance paper by specified number of pixel rows.

	
flush()[source]

	Flush data pending in the printer.

	
has_paper()[source]

	Return a boolean indicating if the printer has paper. You MUST have
the serial RX line hooked up for this to work. NOTE: be VERY CAREFUL
to ensure your board can handle a 5V serial input before hooking up
the RX line!

	
inverse

	Set the inverse printing mode boolean to enable or disable inverse printing.

	
justify

	Set the justification of text, must be a value of JUSTIFY_LEFT, JUSTIFY_CENTER, or JUSTIFY_RIGHT.

	
offline()[source]

	Put the printer into an offline state. No other commands can be
sent until an online call is made.

	
online()[source]

	Put the printer into an online state after previously put offline.

	
print(text, end='\n')[source]

	Print a line of text. Optionally specify the end keyword to
override the new line printed after the text (set to None to disable
the new line entirely).

	
print_barcode(text, barcode_type)[source]

	Print a barcode with the specified text/number (the meaning
varies based on the type of barcode) and type. Type is a value from
the datasheet or class-level variables like UPC_A, etc. for
convenience. Note the type value changes depending on the firmware
version so use class-level values where possible!

	
reset()[source]

	Reset the printer.

	
send_command(command)[source]

	Send a command string to the printer.

	
set_defaults()[source]

	Set default printing and text options. This is useful to reset back
to a good state after printing different size, weight, etc. text.

	
size

	Set the size of text, must be a value of SIZE_SMALL, SIZE_MEDIUM, or SIZE_LARGE.

	
tab()[source]

	Print a tab (i.e. move to next 4 character block). Note this is
only supported on more recent firmware printers!

	
test_page()[source]

	Print a test page.

	
underline

	Set the underline state of the text, must be None (off), UNDERLINE_THIN, or UNDERLINE_THICK.

	
up_down_mode

	Turns on/off upside-down printing mode

	
warm_up(heat_time=120)[source]

	Initialize the printer. Can specify an optional heat_time keyword
to override the default heating timing of 1.2 ms. See the datasheet
for details on the heating time value (duration in 10uS increments).
Note that calling this function will take about half a second for the
printer to intialize and warm up.

adafruit_thermal_printer.thermal_printer_264.ThermalPrinter

Thermal printer control module built to work with small serial thermal
receipt printers. Note that these printers have many different firmware
versions and care must be taken to select the appropriate module inside this
package for your firmware printer:

	thermal_printer_2168 = Printers with firmware version 2.168+.

	thermal_printer = The latest printers with firmware version 2.68 up to 2.168

	thermal_printer_264 = Printers with firmware version 2.64 up to 2.68.

	thermal_printer_legacy = Printers with firmware version before 2.64.

	Author(s): Tony DiCola

	
class adafruit_thermal_printer.thermal_printer_264.ThermalPrinter(uart, byte_delay_s=0.00057346, dot_feed_s=0.0021, dot_print_s=0.03)[source]

	Thermal printer for printers with firmware version 2.64 up to (but
NOT including) 2.68.

adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter

Thermal printer control module built to work with small serial thermal
receipt printers. Note that these printers have many different firmware
versions and care must be taken to select the appropriate module inside this
package for your firmware printer:

	thermal_printer_2168 = Printers with firmware version 2.168+.

	thermal_printer = The latest printers with firmware version 2.68 up to 2.168

	thermal_printer_264 = Printers with firmware version 2.64 up to 2.68.

	thermal_printer_legacy = Printers with firmware version before 2.64.

	Author(s): Tony DiCola

	
class adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter(uart, byte_delay_s=0.00057346, dot_feed_s=0.0021, dot_print_s=0.03)[source]

	Thermal printer for printers with firmware version before 2.64.

	
feed(lines)[source]

	Advance paper by specified number of blank lines.

	
has_paper()[source]

	Return a boolean indicating if the printer has paper. You MUST have
the serial RX line hooked up for this to work.

Note

be VERY CAREFUL to ensure your board can handle a 5V serial
input before hooking up the RX line!

	
print_barcode(text, barcode_type)[source]

	Print a barcode with the specified text/number (the meaning
varies based on the type of barcode) and type. Type is a value from
the datasheet or class-level variables like UPC_A, etc. for
convenience. Note the type value changes depending on the firmware
version so use class-level values where possible!

	
reset()[source]

	Reset the printer.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 adafruit_thermal_printer	

 	
 	
 adafruit_thermal_printer.thermal_printer	

 	
 	
 adafruit_thermal_printer.thermal_printer_264	

 	
 	
 adafruit_thermal_printer.thermal_printer_legacy	

Index

 A
 | F
 | H
 | I
 | J
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	adafruit_thermal_printer.thermal_printer (module)

 	
 	adafruit_thermal_printer.thermal_printer_264 (module)

 	adafruit_thermal_printer.thermal_printer_legacy (module)

F

 	
 	feed() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	(adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter method)

 	
 	feed_rows() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	flush() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

H

 	
 	has_paper() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	(adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter method)

I

 	
 	inverse (adafruit_thermal_printer.thermal_printer.ThermalPrinter attribute)

J

 	
 	justify (adafruit_thermal_printer.thermal_printer.ThermalPrinter attribute)

O

 	
 	offline() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	
 	online() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

P

 	
 	print() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	
 	print_barcode() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	(adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter method)

R

 	
 	reset() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	(adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter method)

S

 	
 	send_command() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	
 	set_defaults() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	size (adafruit_thermal_printer.thermal_printer.ThermalPrinter attribute)

T

 	
 	tab() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	test_page() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 	
 	ThermalPrinter (class in adafruit_thermal_printer.thermal_printer)

 	(class in adafruit_thermal_printer.thermal_printer_264)

 	(class in adafruit_thermal_printer.thermal_printer_legacy)

U

 	
 	underline (adafruit_thermal_printer.thermal_printer.ThermalPrinter attribute)

 	
 	up_down_mode (adafruit_thermal_printer.thermal_printer.ThermalPrinter attribute)

W

 	
 	warm_up() (adafruit_thermal_printer.thermal_printer.ThermalPrinter method)

 All modules for which code is available

	adafruit_thermal_printer.thermal_printer

	adafruit_thermal_printer.thermal_printer_264

	adafruit_thermal_printer.thermal_printer_legacy

 Source code for adafruit_thermal_printer.thermal_printer

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
`adafruit_thermal_printer.thermal_printer` - Thermal Printer Driver
===

Thermal printer control module built to work with small serial thermal
receipt printers. Note that these printers have many different firmware
versions and care must be taken to select the appropriate module inside this
package for your firmware printer:

* thermal_printer = The latest printers with firmware version 2.68+
* thermal_printer_264 = Printers with firmware version 2.64 up to 2.68.
* thermal_printer_legacy = Printers with firmware version before 2.64.

* Author(s): Tony DiCola

Implementation Notes

Hardware:

* Mini `Thermal Receipt Printer
 <https://www.adafruit.com/product/597>`_ (Product ID: 597)

Software and Dependencies:

* Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
 https://github.com/adafruit/circuitpython/releases

"""
import time

from micropython import const

__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer.git"

Internally used constants.
_UPDOWN_MASK = const(1 << 2)
_BOLD_MASK = const(1 << 3)
_DOUBLE_HEIGHT_MASK = const(1 << 4)
_DOUBLE_WIDTH_MASK = const(1 << 5)
_STRIKE_MASK = const(1 << 6)

External constants:
JUSTIFY_LEFT = const(0)
JUSTIFY_CENTER = const(1)
JUSTIFY_RIGHT = const(2)
SIZE_SMALL = const(0)
SIZE_MEDIUM = const(1)
SIZE_LARGE = const(2)
UNDERLINE_THIN = const(0)
UNDERLINE_THICK = const(1)

Disable too many instance members warning. This is not something pylint can
reasonably infer--the complexity of instance variables is required for proper
printer function. Disable this warning.
pylint: disable=too-many-instance-attributes

Disable too many public members warning. Again this is not something pylint
can reasonably decide. Thermal printers require lots of control functions.
Disable this warning.
pylint: disable=too-many-public-methods

Thermal printer class for printers with firmware version 2.68 and higher.
Do not modify this class without fully understanding its coupling to the
legacy and 2.64+ version printer which inherit from it. These legacy printer
classes override specific functions which have different requirements of
behavior between different versions of printer firmware. Firmware printers
vary _greatly_ in their command set--there is not a clean abstraction. The
assumption here is that this class is the master with logic for the most
recent (2.68+) firmware printers. Older firmware versions inherit and
override behavior where necessary. It is highly, HIGHLY recommended you
carefully study the Arduino thermal printer library code and fully
understand all the firmware differences (notice where the library changes
behavior with the firmware version define):
https://github.com/adafruit/Adafruit-Thermal-Printer-Library
Bottom line: don't touch this code without understanding the big picture or
else it will be very easy to break or introduce subtle incompatibilities with
older firmware printers.
[docs]class ThermalPrinter:
 """Thermal printer for printers with firmware version from 2.68 and below 2.168"""

 # Barcode types. These vary based on the firmware version so are made
 # as class-level variables that users can reference (i.e.
 # ThermalPrinter.UPC_A, etc) and write code that is independent of the
 # printer firmware version.
 UPC_A = 65
 UPC_E = 66
 EAN13 = 67
 EAN8 = 68
 CODE39 = 69
 ITF = 70
 CODABAR = 71
 CODE93 = 72
 CODE128 = 73

 class _PrintModeBit:
 # Internal descriptor class to simplify printer mode change properties.
 # This is tightly coupled to the ThermalPrinter implementation--do not
 # change it without fully understanding these dependencies on the
 # internal _set_print_mode and other methods!

 # pylint doesn't have the context to realize this internal class is
 # explicitly tightly coupled to the parent class implementation.
 # Therefore disable its warnings about protected access--this access
 # is required and by design.
 # pylint: disable=protected-access

 # Another odd pylint case, it seems to not realize this is a descriptor
 # which by design only implements get, set, init. As a result workaround
 # this pylint issue by disabling the warning.
 # pylint: disable=too-few-public-methods
 def __init__(self, mask):
 self._mask = mask

 def __get__(self, obj, objtype):
 return obj._print_mode & self._mask > 0

 def __set__(self, obj, val):
 if val:
 obj._set_print_mode(self._mask)
 else:
 obj._unset_print_mode(self._mask)

 # pylint: enable=protected-access
 # pylint: enable=too-few-public-methods

 def __init__(
 self,
 uart,
 *,
 byte_delay_s=0.00057346,
 dot_feed_s=0.0021,
 dot_print_s=0.03,
 auto_warm_up=True
):
 """Thermal printer class. Requires a serial UART connection with at
 least the TX pin connected. Take care connecting RX as the printer
 will output a 5V signal which can damage boards! If RX is unconnected
 the only loss in functionality is the has_paper function, all other
 printer functions will continue to work. The byte_delay_s, dot_feed_s,
 and dot_print_s values are delays which are used to prevent overloading
 the printer with data. Use the default delays unless you fully
 understand the workings of the printer and how delays, baud rate,
 number of dots, heat time, etc. relate to each other. Can set
 auto_warm_up to a boolean value (default True) to automatically call
 the warm_up function which will initialize the printer (but can take a
 significant amount of time, on the order 0.5-5 seconds, be warned!).
 """
 self.max_chunk_height = 255
 self._resume = 0
 self._uart = uart
 self._print_mode = 0
 self._column = 0
 self._max_column = 32
 self._char_height = 24
 self._line_spacing = 6
 self._barcode_height = 50
 self.up_down_mode = True
 # pylint: disable=line-too-long
 # Byte delay calculated based on assumption of 19200 baud.
 # From Arduino library code, see formula here:
 # https://github.com/adafruit/Adafruit-Thermal-Printer-Library/blob/master/Adafruit_Thermal.cpp#L50-L53
 # pylint: enable=line-too-long
 self._byte_delay_s = byte_delay_s
 self._dot_feed_s = dot_feed_s
 self._dot_print_s = dot_print_s
 self.reset()
 if auto_warm_up:
 self.warm_up()

 def _set_timeout(self, period_s):
 # Set a timeout before future commands can be sent.
 self._resume = time.monotonic() + period_s

 def _wait_timeout(self):
 # Ensure the timeout that was previously set has passed (will busy wait).
 while time.monotonic() < self._resume:
 pass

 def _write_char(self, char):
 # Write a single character to the printer.
 if char == "\r":
 return # Strip carriage returns by skipping them.
 self._wait_timeout()
 self._uart.write(bytes(char, "ascii"))
 delay = self._byte_delay_s
 # Add extra delay for newlines or moving past the last column.
 if char == "\n" or self._column == self._max_column:
 if self._column == 0:
 # Feed line delay
 delay += (self._char_height + self._line_spacing) * self._dot_feed_s
 else:
 # Text line delay
 delay += (self._char_height * self._dot_print_s) + (
 self._line_spacing * self._dot_feed_s
)
 self._column = 0
 else:
 self._column += 1
 self._set_timeout(delay)

 def _write_print_mode(self):
 # Write the printer mode to the printer.
 self.send_command(
 "\x1B!{0}".format(chr(self._print_mode))
) # ESC + '!' + print mode byte
 # Adjust character height and column count based on print mode.
 self._char_height = 48 if self._print_mode & _DOUBLE_HEIGHT_MASK else 24
 self._max_column = 16 if self._print_mode & _DOUBLE_WIDTH_MASK else 32

 def _set_print_mode(self, mask):
 # Enable the specified bits of the print mode.
 self._print_mode |= mask & 0xFF
 self._write_print_mode()

 def _unset_print_mode(self, mask):
 # Disable the specified bits of the print mode.
 self._print_mode &= ~(mask & 0xFF)
 self._write_print_mode()

[docs] def send_command(self, command):
 """Send a command string to the printer."""
 self._uart.write(bytes(command, "ascii"))

 # Do initialization in warm_up instead of the initializer because this
 # initialization takes a long time (5 seconds) and shouldn't happen during
 # object creation (users need explicit control of when to start it).
[docs] def warm_up(self, heat_time=120):
 """Initialize the printer. Can specify an optional heat_time keyword
 to override the default heating timing of 1.2 ms. See the datasheet
 for details on the heating time value (duration in 10uS increments).
 Note that calling this function will take about half a second for the
 printer to intialize and warm up.
 """
 assert 0 <= heat_time <= 255
 self._set_timeout(0.5) # Half second delay for printer to initialize.
 self.reset()
 # ESC 7 n1 n2 n3 Setting Control Parameter Command
 # n1 = "max heating dots" 0-255 -- max number of thermal print head
 # elements that will fire simultaneously. Units = 8 dots (minus 1).
 # Printer default is 7 (64 dots, or 1/6 of 384-dot width), this code
 # sets it to 11 (96 dots, or 1/4 of width).
 # n2 = "heating time" 3-255 -- duration that heating dots are fired.
 # Units = 10 us. Printer default is 80 (800 us), this code sets it
 # to value passed (default 120, or 1.2 ms -- a little longer than
 # the default because we've increased the max heating dots).
 # n3 = "heating interval" 0-255 -- recovery time between groups of
 # heating dots on line; possibly a function of power supply.
 # Units = 10 us. Printer default is 2 (20 us), this code sets it
 # to 40 (throttled back due to 2A supply).
 # More heating dots = more peak current, but faster printing speed.
 # More heating time = darker print, but slower printing speed and
 # possibly paper 'stiction'. More heating interval = clearer print,
 # but slower printing speed.
 # Send ESC + '7' (print settings) + heating dots, heat time, heat interval.
 self.send_command("\x1B7\x0B{0}\x28".format(chr(heat_time)))
 # Print density description from manual:
 # DC2 # n Set printing density
 # D4..D0 of n is used to set the printing density. Density is
 # 50% + 5% * n(D4-D0) printing density.
 # D7..D5 of n is used to set the printing break time. Break time
 # is n(D7-D5)*250us.
 print_density = 10 # 100% (? can go higher, text is darker but fuzzy)
 print_break_time = 2 # 500 uS
 dc2_value = (print_break_time << 5) | print_density
 self.send_command("\x12#{0}".format(chr(dc2_value))) # DC2 + '#' + value

[docs] def reset(self):
 """Reset the printer."""
 # Issue a reset command to the printer. (ESC + @)
 self.send_command("\x1B@")
 # Reset internal state:
 self._column = 0
 self._max_column = 32
 self._char_height = 24
 self._line_spacing = 6
 self._barcode_height = 50
 # Configure tab stops on recent printers.
 # ESC + 'D' + tab stop value list ending with null to terminate.
 self.send_command("\x1BD\x04\x08\x10\x14\x18\x1C\x00")

[docs] def print(self, text, end="\n"):
 """Print a line of text. Optionally specify the end keyword to
 override the new line printed after the text (set to None to disable
 the new line entirely).
 """
 for char in text:
 self._write_char(char)
 if end is not None:
 self._write_char(end)

[docs] def print_barcode(self, text, barcode_type):
 """Print a barcode with the specified text/number (the meaning
 varies based on the type of barcode) and type. Type is a value from
 the datasheet or class-level variables like UPC_A, etc. for
 convenience. Note the type value changes depending on the firmware
 version so use class-level values where possible!
 """
 assert 0 <= barcode_type <= 255
 assert 0 <= len(text) <= 255
 self.feed(1) # Recent firmware can't print barcode w/o feed first???
 self.send_command("\x1DH\x02") # Print label below barcode
 self.send_command("\x1Dw\x03") # Barcode width 3 (0.375/1.0mm thin/thick)
 self.send_command("\x1Dk{0}".format(chr(barcode_type))) # Barcode type
 # Write length and then string (note this only works with 2.64+).
 self.send_command(chr(len(text)))
 self.send_command(text)
 self._set_timeout((self._barcode_height + 40) * self._dot_print_s)
 self._column = 0

 def _print_bitmap(self, width, height, data):
 """Print a bitmap image of the specified width, height and data bytes.
 Data bytes must be in 1-bit per pixel format, i.e. each byte represents
 8 pixels of image data along a row of the image. You will want to
 pre-process your images with a script, you CANNOT send .jpg/.bmp/etc.
 image formats. See this Processing sketch for preprocessing:
 https://github.com/adafruit/Adafruit-Thermal-Printer-Library/blob/master/processing/bitmapImageConvert/bitmapImageConvert.pde

 .. note:: This is currently not working because it appears the bytes are
 sent too slowly and the printer gets confused with not enough data being
 sent to it in the expected time.
 """
 assert len(data) >= (width // 8) * height
 row_bytes = (width + 7) // 8 # Round up to next byte boundary.
 row_bytes_clipped = min(row_bytes, 48) # 384 pixels max width.
 chunk_height_limit = 256 // row_bytes_clipped
 # Clip chunk height within the 1 to max range.
 chunk_height_limit = max(1, min(self.max_chunk_height, chunk_height_limit))
 i = 0
 for row_start in range(0, height, chunk_height_limit):
 # Issue up to chunkHeightLimit rows at a time.
 chunk_height = min(height - row_start, chunk_height_limit)
 self.send_command(
 "\x12*{0}{1}".format(chr(chunk_height), chr(row_bytes_clipped))
)
 for _ in range(chunk_height):
 for _ in range(row_bytes_clipped):
 # Drop down to low level UART access to avoid newline and
 # other bitmap values being misinterpreted.
 self._wait_timeout()
 self._uart.write(chr(data[i]))
 i += 1
 i += row_bytes - row_bytes_clipped
 self._set_timeout(chunk_height * self._dot_print_s)
 self._column = 0

[docs] def test_page(self):
 """Print a test page."""
 self.send_command("\x12T") # DC2 + 'T' for test page
 # Delay for 26 lines w/text (ea. 24 dots high) +
 # 26 text lines (feed 6 dots) + blank line
 self._set_timeout(
 self._dot_print_s * 24 * 26 + self._dot_feed_s * (6 * 26 + 30)
)

[docs] def set_defaults(self):
 """Set default printing and text options. This is useful to reset back
 to a good state after printing different size, weight, etc. text.
 """
 self.online()
 self.justify = JUSTIFY_LEFT
 self.size = SIZE_SMALL
 self.underline = None
 self.inverse = False
 self.upside_down = False
 # this should work in 2.68 according to user manual v 4.0
 # but it does't work with 2.168 hence i implemented the below
 self.up_down_mode = True
 self.double_height = False
 self.double_width = False
 self.strike = False
 self.bold = False
 self._set_line_height(30)
 self._set_barcode_height(50)
 self._set_charset()
 self._set_code_page()

 def _set_justify(self, val):
 assert 0 <= val <= 2
 if val == JUSTIFY_LEFT:
 self.send_command("\x1Ba\x00") # ESC + 'a' + 0
 elif val == JUSTIFY_CENTER:
 self.send_command("\x1Ba\x01") # ESC + 'a' + 1
 elif val == JUSTIFY_RIGHT:
 self.send_command("\x1Ba\x02") # ESC + 'a' + 2

 # pylint: disable=line-too-long
 # Write-only property, can't assume we can read state from the printer
 # since there is no command for it and hooking up RX is discouraged
 # (5V will damage many boards).
 justify = property(
 None,
 _set_justify,
 None,
 "Set the justification of text, must be a value of JUSTIFY_LEFT, JUSTIFY_CENTER, or JUSTIFY_RIGHT.",
)
 # pylint: enable=line-too-long

 def _set_size(self, val):
 assert 0 <= val <= 2
 if val == SIZE_SMALL:
 self._char_height = 24
 self._max_column = 32
 self.send_command("\x1D!\x00") # ASCII GS + '!' + 0x00
 elif val == SIZE_MEDIUM:
 self._char_height = 48
 self._max_column = 32
 self.send_command("\x1D!\x01") # ASCII GS + '!' + 0x01
 elif val == SIZE_LARGE:
 self._char_height = 48
 self._max_column = 16
 self.send_command("\x1D!\x11") # ASCII GS + '!' + 0x11
 self._column = 0

 # pylint: disable=line-too-long
 # Write-only property, can't assume we can read state from the printer
 # since there is no command for it and hooking up RX is discouraged
 # (5V will damage many boards).
 size = property(
 None,
 _set_size,
 None,
 "Set the size of text, must be a value of SIZE_SMALL, SIZE_MEDIUM, or SIZE_LARGE.",
)
 # pylint: enable=line-too-long

 def _set_underline(self, val):
 assert val is None or (0 <= val <= 1)
 if val is None:
 # Turn off underline.
 self.send_command("\x1B-\x00") # ESC + '-' + 0
 elif val == UNDERLINE_THIN:
 self.send_command("\x1B-\x01") # ESC + '-' + 1
 elif val == UNDERLINE_THICK:
 self.send_command("\x1B-\x02") # ESC + '-' + 2

 # pylint: disable=line-too-long
 # Write-only property, can't assume we can read state from the printer
 # since there is no command for it and hooking up RX is discouraged
 # (5V will damage many boards).
 underline = property(
 None,
 _set_underline,
 None,
 "Set the underline state of the text, must be None (off), UNDERLINE_THIN, or UNDERLINE_THICK.",
)
 # pylint: enable=line-too-long

 def _set_inverse(self, inverse):
 # Set the inverse printing state to enabled disabled with the specified
 # boolean value. This requires printer firmare 2.68+
 if inverse:
 self.send_command("\x1DB\x01") # ESC + 'B' + 1
 else:
 self.send_command("\x1DB\x00") # ESC + 'B' + 0

 # pylint: disable=line-too-long
 # Write-only property, can't assume we can read inverse state from the
 # printer since there is no command for it and hooking up RX is discouraged
 # (5V will damage many boards).
 inverse = property(
 None,
 _set_inverse,
 None,
 "Set the inverse printing mode boolean to enable or disable inverse printing.",
)
 # pylint: enable=line-too-long

 def _set_up_down_mode(self, up_down_mode):
 if up_down_mode:
 self.send_command("\x1B{\x01")

 else:
 self.send_command("\x1B{\x00")

 up_down_mode = property(
 None, _set_up_down_mode, None, "Turns on/off upside-down printing mode"
)
 # The above Should work in 2.68 so its here and not in 2.168 module

 upside_down = _PrintModeBit(_UPDOWN_MASK) # Don't work in 2.168 hence the above

 double_height = _PrintModeBit(_DOUBLE_HEIGHT_MASK)

 double_width = _PrintModeBit(_DOUBLE_WIDTH_MASK)

 strike = _PrintModeBit(_STRIKE_MASK)

 bold = _PrintModeBit(_BOLD_MASK)

[docs] def feed(self, lines):
 """Advance paper by specified number of blank lines."""
 assert 0 <= lines <= 255
 self.send_command("\x1Bd{0}".format(chr(lines)))
 self._set_timeout(self._dot_feed_s * self._char_height)
 self._column = 0

[docs] def feed_rows(self, rows):
 """Advance paper by specified number of pixel rows."""
 assert 0 <= rows <= 255
 self.send_command("\x1BJ{0}".format(chr(rows)))
 self._set_timeout(rows * self._dot_feed_s)
 self._column = 0

[docs] def flush(self):
 """Flush data pending in the printer."""
 self.send_command("\f")

[docs] def offline(self):
 """Put the printer into an offline state. No other commands can be
 sent until an online call is made.
 """
 self.send_command("\x1B=\x00") # ESC + '=' + 0

[docs] def online(self):
 """Put the printer into an online state after previously put offline."""
 self.send_command("\x1B=\x01") # ESC + '=' + 1

[docs] def has_paper(self):
 """Return a boolean indicating if the printer has paper. You MUST have
 the serial RX line hooked up for this to work. NOTE: be VERY CAREFUL
 to ensure your board can handle a 5V serial input before hooking up
 the RX line!
 """
 # This only works with firmware 2.64+:
 self.send_command("\x1Bv\x00") # ESC + 'v' + 0
 status = self._uart.read(1)
 if status is None:
 return False
 return not status[0] & 0b00000100

 def _set_line_height(self, height):
 """Set the line height in pixels. This is the total amount of space
 between lines, including the height of text. The smallest value is 24
 and the largest is 255.
 """
 assert 24 <= height <= 255
 self._line_spacing = height - 24
 self.send_command("\x1B3{0}".format(chr(height))) # ESC + '3' + height

 def _set_barcode_height(self, height):
 """Set the barcode height in pixels. Must be a value 1 - 255."""
 assert 1 <= height <= 255
 self._barcode_height = height
 self.send_command("\x1Dh{0}".format(chr(height))) # ASCII GS + 'h' + height

 def _set_charset(self, charset=0):
 """Alters the character set for ASCII characters 0x23-0x7E. See
 datasheet for details on character set values (0-15). Note this is only
 supported on more recent firmware printers!
 """
 assert 0 <= charset <= 15
 self.send_command("\x1BR{0}".format(chr(charset))) # ESC + 'R' + charset

 def _set_code_page(self, code_page=0):
 """Select alternate code page for upper ASCII symbols 0x80-0xFF. See
 datasheet for code page values (0 - 47). Note this is only supported
 on more recent firmware printers!
 """
 assert 0 <= code_page <= 47
 self.send_command("\x1Bt{0}".format(chr(code_page))) # ESC + 't' + code page

[docs] def tab(self):
 """Print a tab (i.e. move to next 4 character block). Note this is
 only supported on more recent firmware printers!"""
 self.send_command("\t")
 # Increment to the next position that's every 4 spaces.
 # I.e. increment by 4 and go to the floor/first position of the block.
 self._column = (self._column + 4) & 0b11111100

 Source code for adafruit_thermal_printer.thermal_printer_264

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
`adafruit_thermal_printer.thermal_printer_264.ThermalPrinter`
==

Thermal printer control module built to work with small serial thermal
receipt printers. Note that these printers have many different firmware
versions and care must be taken to select the appropriate module inside this
package for your firmware printer:

* thermal_printer_2168 = Printers with firmware version 2.168+.
* thermal_printer = The latest printers with firmware version 2.68 up to 2.168
* thermal_printer_264 = Printers with firmware version 2.64 up to 2.68.
* thermal_printer_legacy = Printers with firmware version before 2.64.

* Author(s): Tony DiCola
"""
from micropython import const

import adafruit_thermal_printer.thermal_printer as thermal_printer

__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer.git"

Internally used constants.
_INVERSE_MASK = const(1 << 1) # Not in 2.6.8 firmware

Legacy behavior class for printers with firmware 2.64 up to 2.68.
See the comments in thermal_printer.py to understand how this class overrides
methods which change for older firmware printers!
[docs]class ThermalPrinter(thermal_printer.ThermalPrinter):
 """Thermal printer for printers with firmware version 2.64 up to (but
 NOT including) 2.68.
 """

 # Barcode types. These vary based on the firmware version so are made
 # as class-level variables that users can reference (i.e.
 # ThermalPrinter.UPC_A, etc) and write code that is independent of the
 # printer firmware version.
 UPC_A = 65
 UPC_E = 66
 EAN13 = 67
 EAN8 = 68
 CODE39 = 69
 ITF = 70
 CODABAR = 71
 CODE93 = 72
 CODE128 = 73

 def __init__(
 self, uart, byte_delay_s=0.00057346, dot_feed_s=0.0021, dot_print_s=0.03
):
 """Thermal printer class. Requires a serial UART connection with at
 least the TX pin connected. Take care connecting RX as the printer
 will output a 5V signal which can damage boards! If RX is unconnected
 the only loss in functionality is the has_paper function, all other
 printer functions will continue to work. The byte_delay_s, dot_feed_s,
 and dot_print_s values are delays which are used to prevent overloading
 the printer with data. Use the default delays unless you fully
 understand the workings of the printer and how delays, baud rate,
 number of dots, heat time, etc. relate to each other.
 """
 super().__init__(
 uart,
 byte_delay_s=byte_delay_s,
 dot_feed_s=dot_feed_s,
 dot_print_s=dot_print_s,
)

 # Inverse on older printers (pre 2.68) uses a print mode bit instead of
 # specific commands.
 inverse = thermal_printer.ThermalPrinter._PrintModeBit(_INVERSE_MASK)

 Source code for adafruit_thermal_printer.thermal_printer_legacy

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
`adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter`
===

Thermal printer control module built to work with small serial thermal
receipt printers. Note that these printers have many different firmware
versions and care must be taken to select the appropriate module inside this
package for your firmware printer:

* thermal_printer_2168 = Printers with firmware version 2.168+.
* thermal_printer = The latest printers with firmware version 2.68 up to 2.168
* thermal_printer_264 = Printers with firmware version 2.64 up to 2.68.
* thermal_printer_legacy = Printers with firmware version before 2.64.

* Author(s): Tony DiCola
"""
from micropython import const

import adafruit_thermal_printer.thermal_printer as thermal_printer

__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer.git"

Internally used constants.
_INVERSE_MASK = const(1 << 1) # Not in 2.6.8 firmware

Legacy behavior class for printers with firmware before 2.64.
See the comments in thermal_printer.py to understand how this class overrides
methods which change for older firmware printers!
[docs]class ThermalPrinter(thermal_printer.ThermalPrinter):
 """Thermal printer for printers with firmware version before 2.64."""

 # Barcode types. These vary based on the firmware version so are made
 # as class-level variables that users can reference (i.e.
 # ThermalPrinter.UPC_A, etc) and write code that is independent of the
 # printer firmware version.
 UPC_A = 0
 UPC_E = 1
 EAN13 = 2
 EAN8 = 3
 CODE39 = 4
 I25 = 5
 CODEBAR = 6
 CODE93 = 7
 CODE128 = 8
 CODE11 = 9
 MSI = 10

 def __init__(
 self, uart, byte_delay_s=0.00057346, dot_feed_s=0.0021, dot_print_s=0.03
):
 """Thermal printer class. Requires a serial UART connection with at
 least the TX pin connected. Take care connecting RX as the printer
 will output a 5V signal which can damage boards! If RX is unconnected
 the only loss in functionality is the has_paper function, all other
 printer functions will continue to work. The byte_delay_s, dot_feed_s,
 and dot_print_s values are delays which are used to prevent overloading
 the printer with data. Use the default delays unless you fully
 understand the workings of the printer and how delays, baud rate,
 number of dots, heat time, etc. relate to each other.
 """
 super().__init__(
 uart,
 byte_delay_s=byte_delay_s,
 dot_feed_s=dot_feed_s,
 dot_print_s=dot_print_s,
)

[docs] def print_barcode(self, text, barcode_type):
 """Print a barcode with the specified text/number (the meaning
 varies based on the type of barcode) and type. Type is a value from
 the datasheet or class-level variables like UPC_A, etc. for
 convenience. Note the type value changes depending on the firmware
 version so use class-level values where possible!
 """
 assert 0 <= barcode_type <= 255
 assert 0 <= len(text) <= 255
 self.feed(1) # Recent firmware can't print barcode w/o feed first???
 self.send_command("\x1DH\x02") # Print label below barcode
 self.send_command("\x1Dw\x03") # Barcode width 3 (0.375/1.0mm thin/thick)
 self.send_command("\x1Dk{0}".format(chr(barcode_type))) # Barcode type
 # Pre-2.64 firmware prints the text and then a null character to end.
 # Instead of the length of text as a prefix.
 self.send_command(text)
 self.send_command("\x00")
 self._set_timeout((self._barcode_height + 40) * self._dot_print_s)
 self._column = 0

[docs] def reset(self):
 """Reset the printer."""
 # Issue a reset command to the printer. (ESC + @)
 self.send_command("\x1B@")
 # Reset internal state:
 self._column = 0
 self._max_column = 32
 self._char_height = 24
 self._line_spacing = 6
 self._barcode_height = 50

 # Skip tab configuration on older printers.

[docs] def feed(self, lines):
 """Advance paper by specified number of blank lines."""
 # Just send line feeds for older printers.
 for _ in range(lines):
 self._write_char("\n")

[docs] def has_paper(self):
 """Return a boolean indicating if the printer has paper. You MUST have
 the serial RX line hooked up for this to work.

 .. note::

 be VERY CAREFUL to ensure your board can handle a 5V serial
 input before hooking up the RX line!

 """
 # The paper check command is different for older firmware:
 self.send_command("\x1Br\x00") # ESC + 'r' + 0
 status = self._uart.read(1)
 if status is None:
 return False
 return not status[0] & 0b00000100

 # Inverse on older printers (pre 2.68) uses a print mode bit instead of
 # specific commands.
 inverse = thermal_printer.ThermalPrinter._PrintModeBit(_INVERSE_MASK)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 adafruit_thermal_printer.thermal_printer - Thermal Printer Driver

 		
 Implementation Notes

 		
 adafruit_thermal_printer.thermal_printer_264.ThermalPrinter

 		
 adafruit_thermal_printer.thermal_printer_legacy.ThermalPrinter

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

