

Introduction

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/tlc5947/en/latest/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_TLC5947/actions/]CircuitPython module for the TLC5947 12-bit 24 channel LED PWM driver.

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-tlc5947/]. To install for current user:

pip3 install adafruit-circuitpython-tlc5947

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-tlc5947

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-tlc5947

Usage Example

See examples/tlc5947_simpletest.py for a demo of the usage.

See examples/tlc5947_chain.py for a demo of chained driver usage.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_TLC5947/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

API Reference

	adafruit_tlc5947
	Implementation Notes

Related Products

	Adafruit 24-Channel 12-bit PWM LED Driver - SPI Interface - TLC5947 [https://www.adafruit.com/product/1429]

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_TLC5947/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/tlc5947_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

	# Simple demo of controlling the TLC5947 12-bit 24-channel PWM controller.
Will update channel values to different PWM duty cycles.
Author: Tony DiCola

import board
import busio
import digitalio

import adafruit_tlc5947

Define pins connected to the TLC5947
SCK = board.SCK
MOSI = board.MOSI
LATCH = digitalio.DigitalInOut(board.D5)

Initialize SPI bus.
spi = busio.SPI(clock=SCK, MOSI=MOSI)

Initialize TLC5947
tlc5947 = adafruit_tlc5947.TLC5947(spi, LATCH)
You can optionally disable auto_write which allows you to control when
channel state is written to the chip. Normally auto_write is true and
will automatically write out changes as soon as they happen to a channel, but
if you need more control or atomic updates of multiple channels then disable
and manually call write as shown below.
tlc5947 = adafruit_tlc5947.TLC5947(spi, LATCH, auto_write=False)

There are two ways to channel channel PWM values. The first is by getting
a PWMOut object that acts like the built-in PWMOut and can be used anywhere
it is used in your code. Change the duty_cycle property to a 16-bit value
(note this is NOT the 12-bit value supported by the chip natively) and the
PWM channel will be updated.

With an RGB LED hooked up to pins 0, 1, and 2, cycle the red, green, and
blue pins up and down:

red = tlc5947.create_pwm_out(0)
green = tlc5947.create_pwm_out(1)
blue = tlc5947.create_pwm_out(2)

step = 10
start_pwm = 0
end_pwm = 32767 # 50% (32767, or half of the maximum 65535):

while True:
 for pin in (red, green, blue):
 # Brighten:
 print("Brightening LED")
 for pwm in range(start_pwm, end_pwm, step):
 pin.duty_cycle = pwm

 # Dim:
 print("Dimming LED")
 for pwm in range(end_pwm, start_pwm, 0 - step):
 pin.duty_cycle = pwm

Note if auto_write was disabled you need to call write on the parent to
make sure the value is written (this is not common, if disabling auto_write
you probably want to use the direct 12-bit raw access instead shown below).
tlc5947.write()

The other way to read and write channels is directly with each channel 12-bit
value and an item accessor syntax. Index into the TLC5947 with the channel
number (0-23) and get or set its 12-bit value (0-4095).
For example set channel 1 to 50% duty cycle.
tlc5947[1] = 2048
Or set channel 23 (first channel from the end) to 2/3 duty cycle.
tlc5947[-1] = 2730
Again be sure to call write if you disabled auto_write.
tlc5947.write()

adafruit_tlc5947

CircuitPython module for the TLC5947 12-bit 24 channel LED PWM driver. See
examples/simpletest.py for a demo of the usage.

	Author(s): Tony DiCola, Walter Haschka

Implementation Notes

Hardware:

	Adafruit 24-Channel 12-bit PWM LED Driver - SPI Interface - TLC5947 [https://www.adafruit.com/product/1429] (Product ID: 1429)

Software and Dependencies:

	Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
https://github.com/adafruit/circuitpython/releases

	
class adafruit_tlc5947.TLC5947(spi, latch, *, auto_write=True, num_drivers=1)[source]

	TLC5947 12-bit 24 channel LED PWM driver. Create an instance of this by
passing in at least the following parameters:

	Parameters

	
	spi – The SPI bus connected to the chip (only the SCK and MOSI lines are
used, there is no MISO/input).

	latch – A DigitalInOut instance connected to the chip’s latch line.

Optionally you can specify:

	Parameters

	
	auto_write – This is a boolean that defaults to True and will automatically
write out all the channel values to the chip as soon as a
single one is updated. If you set to False to disable then
you MUST call write after every channel update or when you
deem necessary to update the chip state.

	num_drivers – This is an integer that defaults to 1. It stands for the
number of chained LED driver boards (DOUT of one board has
to be connected to DIN of the next). For each board added,
36 bytes of RAM memory will be taken. The channel numbers
on the driver directly connected to the controller are 0 to
23, and for each driver add 24 to the port number printed.
The more drivers are chained, the more viable it is to set
auto_write=False, and call write explicitly after updating
all the channels.

	
class PWMOut(tlc5947, channel)[source]

	Internal PWMOut class that mimics the behavior of CircuitPython’s
PWMOut class but is associated with a channel on the TLC5947. You can
get and set the instance’s duty_cycle property as a 16-bit PWM value
(note there will be quantization errors as the TLC5947 is a 12-bit PWM
chip, instead use the TLC5947 class item accessor notation for direct
12-bit raw PWM channel access). Note you cannot change the frequency
as it is fixed by the TLC5947 to ~2.4-5.6 mhz.

	
duty_cycle

	Get and set the 16-bit PWM duty cycle value for this channel.

	
frequency

	Frequency of the PWM channel, note you cannot change this and
cannot read its exact value (it varies from 2.4-5.6 mhz, see the
TLC5947 datasheet).

	
create_pwm_out(channel)[source]

	Create an instance of a PWMOut-like class that mimics the built-in
CircuitPython PWMOut class but is associated with the TLC5947 channel
that is specified. This PWMOut class has a duty_cycle property which
you can read and write with a 16-bit value to control the channel.
Note there will be quantization error as the chip only supports 12-bit
PWM, if this is problematic use the item accessor approach to update
the raw 12-bit channel values.

	
write()[source]

	Write out the current channel PWM values to the chip. This is only
necessary to call if you disabled auto_write in the initializer,
otherwise write is automatically called on any channel update.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 adafruit_tlc5947	

Index

 A
 | C
 | D
 | F
 | T
 | W

A

 	
 	adafruit_tlc5947 (module)

C

 	
 	create_pwm_out() (adafruit_tlc5947.TLC5947 method)

D

 	
 	duty_cycle (adafruit_tlc5947.TLC5947.PWMOut attribute)

F

 	
 	frequency (adafruit_tlc5947.TLC5947.PWMOut attribute)

T

 	
 	TLC5947 (class in adafruit_tlc5947)

 	
 	TLC5947.PWMOut (class in adafruit_tlc5947)

W

 	
 	write() (adafruit_tlc5947.TLC5947 method)

 Source code for adafruit_tlc5947

The MIT License (MIT)
#
Copyright (c) 2017 Tony DiCola for Adafruit Industries
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
`adafruit_tlc5947`
==

CircuitPython module for the TLC5947 12-bit 24 channel LED PWM driver. See
examples/simpletest.py for a demo of the usage.

* Author(s): Tony DiCola, Walter Haschka

Implementation Notes

Hardware:

* Adafruit `24-Channel 12-bit PWM LED Driver - SPI Interface - TLC5947
 <https://www.adafruit.com/product/1429>`_ (Product ID: 1429)

Software and Dependencies:

* Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
 https://github.com/adafruit/circuitpython/releases
"""
__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_TLC5947.git"

Globally disable protected access. Ppylint can't figure out the
context for using internal decorate classes below. In these cases protectected
access is by design for the internal class.
pylint: disable=protected-access

_CHANNELS = 24
_STOREBYTES = _CHANNELS + _CHANNELS // 2

[docs]class TLC5947:
 """TLC5947 12-bit 24 channel LED PWM driver. Create an instance of this by
 passing in at least the following parameters:

 :param spi: The SPI bus connected to the chip (only the SCK and MOSI lines are
 used, there is no MISO/input).
 :param latch: A DigitalInOut instance connected to the chip's latch line.

 Optionally you can specify:

 :param auto_write: This is a boolean that defaults to True and will automatically
 write out all the channel values to the chip as soon as a
 single one is updated. If you set to False to disable then
 you MUST call write after every channel update or when you
 deem necessary to update the chip state.

 :param num_drivers: This is an integer that defaults to 1. It stands for the
 number of chained LED driver boards (DOUT of one board has
 to be connected to DIN of the next). For each board added,
 36 bytes of RAM memory will be taken. The channel numbers
 on the driver directly connected to the controller are 0 to
 23, and for each driver add 24 to the port number printed.
 The more drivers are chained, the more viable it is to set
 auto_write=False, and call write explicitly after updating
 all the channels.
 """

[docs] class PWMOut:
 """Internal PWMOut class that mimics the behavior of CircuitPython's
 PWMOut class but is associated with a channel on the TLC5947. You can
 get and set the instance's duty_cycle property as a 16-bit PWM value
 (note there will be quantization errors as the TLC5947 is a 12-bit PWM
 chip, instead use the TLC5947 class item accessor notation for direct
 12-bit raw PWM channel access). Note you cannot change the frequency
 as it is fixed by the TLC5947 to ~2.4-5.6 mhz.
 """

 def __init__(self, tlc5947, channel):
 self._tlc5947 = tlc5947
 self._channel = channel

 @property
 def duty_cycle(self):
 """Get and set the 16-bit PWM duty cycle value for this channel.
 """
 raw_value = self._tlc5947._get_gs_value(self._channel)
 # Convert to 16-bit value from 12-bits and return it.
 return (raw_value << 4) & 0xFFFF

 @duty_cycle.setter
 def duty_cycle(self, val):
 if val < 0 or val > 65535:
 raise ValueError(
 "PWM intensity {0} outside supported range [0;65535]".format(val)
)
 # Convert to 12-bit value (quantization error will occur!).
 val = (val >> 4) & 0xFFF
 self._tlc5947._set_gs_value(self._channel, val)

 @property
 def frequency(self):
 """Frequency of the PWM channel, note you cannot change this and
 cannot read its exact value (it varies from 2.4-5.6 mhz, see the
 TLC5947 datasheet).
 """
 return 0

 # pylint bug misidentifies the following as a regular function instead
 # of the associated setter: https://github.com/PyCQA/pylint/issues/870
 # Must disable a few checks to make pylint happy (ugh).
 # pylint: disable=no-self-use,unused-argument
 @frequency.setter
 def frequency(self, val):
 raise RuntimeError("Cannot set TLC5947 PWM frequency!")

 # pylint: enable=no-self-use,unused-argument

 def __init__(self, spi, latch, *, auto_write=True, num_drivers=1):
 if num_drivers < 1:
 raise ValueError(
 "Need at least one driver; {0} is not supported.".format(num_drivers)
)
 self._spi = spi
 self._latch = latch
 self._latch.switch_to_output(value=False)
 # This device is just a big 36*n byte long shift register. There's no
 # fancy protocol or other commands to send, just write out all 288*n
 # bits every time the state is updated.
 self._n = num_drivers
 self._shift_reg = bytearray(_STOREBYTES * self._n)
 # Save auto_write state (i.e. push out shift register values on
 # any channel value change).
 self.auto_write = auto_write

[docs] def write(self):
 """Write out the current channel PWM values to the chip. This is only
 necessary to call if you disabled auto_write in the initializer,
 otherwise write is automatically called on any channel update.
 """
 # Write out the current state to the shift register.
 try:
 # Lock the SPI bus and configure it for the shift register.
 while not self._spi.try_lock():
 pass

 # First ensure latch is low.
 self._latch.value = False
 # Write out the bits.
 self._spi.write(self._shift_reg, start=0, end=_STOREBYTES * self._n + 1)
 # Then toggle latch high and low to set the value.
 self._latch.value = True
 self._latch.value = False
 finally:
 # Ensure the SPI bus is unlocked.
 self._spi.unlock()

 def _get_gs_value(self, channel):
 # pylint: disable=no-else-return
 # Disable should be removed when refactor can be tested
 if channel < 0 or channel >= _CHANNELS * self._n:
 raise ValueError(
 "Channel {0} not available with {1} board(s).".format(channel, self._n)
)
 # Invert channel position as the last channel needs to be written first.
 # I.e. is in the first position of the shift registr.
 channel = _CHANNELS * self._n - 1 - channel
 # Calculate exact bit position within the shift register.
 bit_offset = channel * 12
 # Now calculate the byte that this position falls within and any offset
 # from the left inside that byte.
 byte_start = bit_offset // 8
 start_offset = bit_offset % 8
 # Grab the high and low bytes.
 high_byte = self._shift_reg[byte_start]
 low_byte = self._shift_reg[byte_start + 1]
 if start_offset == 4:
 # Value starts in the lower 4 bits of the high bit so you can
 # just concat high with low byte and return the 12-bit value.
 return ((high_byte << 8) | low_byte) & 0xFFF
 elif start_offset == 0:
 # Value starts in the entire high byte and spills into upper
 # 4 bits of low byte. Shift low byte and concat values.
 return ((high_byte << 4) | (low_byte >> 4)) & 0xFFF
 else:
 raise RuntimeError("Unsupported bit offset!")

 def _set_gs_value(self, channel, val):
 if channel < 0 or channel >= _CHANNELS * self._n:
 raise ValueError(
 "Channel {0} not available with {1} board(s).".format(channel, self._n)
)
 if val < 0 or val > 4095:
 raise ValueError(
 "PWM intensity {0} outside supported range [0;4095]".format(val)
)

 # Invert channel position as the last channel needs to be written first.
 # I.e. is in the first position of the shift registr.
 channel = _CHANNELS * self._n - 1 - channel
 # Calculate exact bit position within the shift register.
 bit_offset = channel * 12
 # Now calculate the byte that this position falls within and any offset
 # from the left inside that byte.
 byte_start = bit_offset // 8
 start_offset = bit_offset % 8
 # Grab the high and low bytes.
 high_byte = self._shift_reg[byte_start]
 low_byte = self._shift_reg[byte_start + 1]
 if start_offset == 4:
 # Value starts in the lower 4 bits of the high bit.
 high_byte &= 0b11110000
 high_byte |= val >> 8
 low_byte = val & 0xFF
 elif start_offset == 0:
 # Value starts in the entire high byte and spills into upper
 # 4 bits of low byte.
 high_byte = (val >> 4) & 0xFF
 low_byte &= 0b00001111
 low_byte |= (val << 4) & 0xFF
 else:
 raise RuntimeError("Unsupported bit offset!")
 self._shift_reg[byte_start] = high_byte
 self._shift_reg[byte_start + 1] = low_byte
 # Write the updated shift register values if required.
 if self.auto_write:
 self.write()

[docs] def create_pwm_out(self, channel):
 """Create an instance of a PWMOut-like class that mimics the built-in
 CircuitPython PWMOut class but is associated with the TLC5947 channel
 that is specified. This PWMOut class has a duty_cycle property which
 you can read and write with a 16-bit value to control the channel.
 Note there will be quantization error as the chip only supports 12-bit
 PWM, if this is problematic use the item accessor approach to update
 the raw 12-bit channel values.
 """
 return self.PWMOut(self, channel)

 # Define index and length properties to set and get each channel's raw
 # 12-bit value (useful for changing channels without quantization error
 # like when using the PWMOut mock class).
 def __len__(self):
 """Retrieve the total number of PWM channels available."""
 return _CHANNELS * self._n # number channels times number chips.

 def __getitem__(self, key):
 """Retrieve the 12-bit PWM value for the specified channel (0-max).
 max depends on the number of boards.
 """
 if key < 0: # allow reverse adressing with negative index
 key = key + _CHANNELS * self._n
 return self._get_gs_value(key) # does parameter checking

 def __setitem__(self, key, val):
 """Set the 12-bit PWM value (0-4095) for the specified channel (0-max).
 max depends on the number of boards.
 If auto_write is enabled (the default) then the chip PWM state will
 immediately be updated too, otherwise you must call write to update
 the chip with the new PWM state.
 """
 if key < 0: # allow reverse adressing with negative index
 key = key + _CHANNELS * self._n
 self._set_gs_value(key, val) # does parameter checking

 All modules for which code is available

	adafruit_tlc5947

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 adafruit_tlc5947

 		
 Implementation Notes

_static/up.png

_static/up-pressed.png

