# SPDX-FileCopyrightText: 2017 Radomir Dopieralski for Adafruit Industries
#
# SPDX-License-Identifier: MIT
"""
`adafruit_bno055`
=======================================================================================
This is a CircuitPython driver for the Bosch BNO055 nine degree of freedom
inertial measurement unit module with sensor fusion.
* Author(s): Radomir Dopieralski
**Hardware:**
* Adafruit `9-DOF Absolute Orientation IMU Fusion Breakout - BNO055
<https://www.adafruit.com/product/4646>`_ (Product ID: 4646)
**Software and Dependencies:**
* Adafruit CircuitPython firmware for the supported boards:
https://circuitpython.org/downloads
* Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
* Adafruit's Register library: https://github.com/adafruit/Adafruit_CircuitPython_Register
"""
import time
import struct
from micropython import const
from adafruit_bus_device.i2c_device import I2CDevice
from adafruit_register.i2c_struct import Struct, UnaryStruct
try:
from typing import Any, Optional, Tuple, Type, Union
from busio import I2C, UART
except ImportError:
pass
__version__ = "0.0.0+auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_BNO055.git"
_CHIP_ID = const(0xA0)
CONFIG_MODE = const(0x00)
ACCONLY_MODE = const(0x01)
MAGONLY_MODE = const(0x02)
GYRONLY_MODE = const(0x03)
ACCMAG_MODE = const(0x04)
ACCGYRO_MODE = const(0x05)
MAGGYRO_MODE = const(0x06)
AMG_MODE = const(0x07)
IMUPLUS_MODE = const(0x08)
COMPASS_MODE = const(0x09)
M4G_MODE = const(0x0A)
NDOF_FMC_OFF_MODE = const(0x0B)
NDOF_MODE = const(0x0C)
ACCEL_2G = const(0x00) # For accel_range property
ACCEL_4G = const(0x01) # Default
ACCEL_8G = const(0x02)
ACCEL_16G = const(0x03)
ACCEL_7_81HZ = const(0x00) # For accel_bandwidth property
ACCEL_15_63HZ = const(0x04)
ACCEL_31_25HZ = const(0x08)
ACCEL_62_5HZ = const(0x0C) # Default
ACCEL_125HZ = const(0x10)
ACCEL_250HZ = const(0x14)
ACCEL_500HZ = const(0x18)
ACCEL_1000HZ = const(0x1C)
ACCEL_NORMAL_MODE = const(0x00) # Default. For accel_mode property
ACCEL_SUSPEND_MODE = const(0x20)
ACCEL_LOWPOWER1_MODE = const(0x40)
ACCEL_STANDBY_MODE = const(0x60)
ACCEL_LOWPOWER2_MODE = const(0x80)
ACCEL_DEEPSUSPEND_MODE = const(0xA0)
GYRO_2000_DPS = const(0x00) # Default. For gyro_range property
GYRO_1000_DPS = const(0x01)
GYRO_500_DPS = const(0x02)
GYRO_250_DPS = const(0x03)
GYRO_125_DPS = const(0x04)
GYRO_523HZ = const(0x00) # For gyro_bandwidth property
GYRO_230HZ = const(0x08)
GYRO_116HZ = const(0x10)
GYRO_47HZ = const(0x18)
GYRO_23HZ = const(0x20)
GYRO_12HZ = const(0x28)
GYRO_64HZ = const(0x30)
GYRO_32HZ = const(0x38) # Default
GYRO_NORMAL_MODE = const(0x00) # Default. For gyro_mode property
GYRO_FASTPOWERUP_MODE = const(0x01)
GYRO_DEEPSUSPEND_MODE = const(0x02)
GYRO_SUSPEND_MODE = const(0x03)
GYRO_ADVANCEDPOWERSAVE_MODE = const(0x04)
MAGNET_2HZ = const(0x00) # For magnet_rate property
MAGNET_6HZ = const(0x01)
MAGNET_8HZ = const(0x02)
MAGNET_10HZ = const(0x03)
MAGNET_15HZ = const(0x04)
MAGNET_20HZ = const(0x05) # Default
MAGNET_25HZ = const(0x06)
MAGNET_30HZ = const(0x07)
MAGNET_LOWPOWER_MODE = const(0x00) # For magnet_operation_mode property
MAGNET_REGULAR_MODE = const(0x08) # Default
MAGNET_ENHANCEDREGULAR_MODE = const(0x10)
MAGNET_ACCURACY_MODE = const(0x18)
MAGNET_NORMAL_MODE = const(0x00) # for magnet_power_mode property
MAGNET_SLEEP_MODE = const(0x20)
MAGNET_SUSPEND_MODE = const(0x40)
MAGNET_FORCEMODE_MODE = const(0x60) # Default
_POWER_NORMAL = const(0x00)
_POWER_LOW = const(0x01)
_POWER_SUSPEND = const(0x02)
_MODE_REGISTER = const(0x3D)
_PAGE_REGISTER = const(0x07)
_ACCEL_CONFIG_REGISTER = const(0x08)
_MAGNET_CONFIG_REGISTER = const(0x09)
_GYRO_CONFIG_0_REGISTER = const(0x0A)
_GYRO_CONFIG_1_REGISTER = const(0x0B)
_CALIBRATION_REGISTER = const(0x35)
_OFFSET_ACCEL_REGISTER = const(0x55)
_OFFSET_MAGNET_REGISTER = const(0x5B)
_OFFSET_GYRO_REGISTER = const(0x61)
_RADIUS_ACCEL_REGISTER = const(0x67)
_RADIUS_MAGNET_REGISTER = const(0x69)
_TRIGGER_REGISTER = const(0x3F)
_POWER_REGISTER = const(0x3E)
_ID_REGISTER = const(0x00)
# Axis remap registers and values
_AXIS_MAP_CONFIG_REGISTER = const(0x41)
_AXIS_MAP_SIGN_REGISTER = const(0x42)
AXIS_REMAP_X = const(0x00)
AXIS_REMAP_Y = const(0x01)
AXIS_REMAP_Z = const(0x02)
AXIS_REMAP_POSITIVE = const(0x00)
AXIS_REMAP_NEGATIVE = const(0x01)
class _ScaledReadOnlyStruct(Struct): # pylint: disable=too-few-public-methods
def __init__(self, register_address: int, struct_format: str, scale: float) -> None:
super().__init__(register_address, struct_format)
self.scale = scale
def __get__(
self, obj: Optional["BNO055_I2C"], objtype: Optional[Type["BNO055_I2C"]] = None
) -> Tuple[float, float, float]:
result = super().__get__(obj, objtype)
return tuple(self.scale * v for v in result)
def __set__(self, obj: Optional["BNO055_I2C"], value: Any) -> None:
raise NotImplementedError()
class _ReadOnlyUnaryStruct(UnaryStruct): # pylint: disable=too-few-public-methods
def __set__(self, obj: Optional["BNO055_I2C"], value: Any) -> None:
raise NotImplementedError()
class _ModeStruct(Struct): # pylint: disable=too-few-public-methods
def __init__(self, register_address: int, struct_format: str, mode: int) -> None:
super().__init__(register_address, struct_format)
self.mode = mode
def __get__(
self, obj: Optional["BNO055_I2C"], objtype: Optional[Type["BNO055_I2C"]] = None
) -> Union[int, Tuple[int, int, int]]:
last_mode = obj.mode
obj.mode = self.mode
result = super().__get__(obj, objtype)
obj.mode = last_mode
# single value comes back as a one-element tuple
return result[0] if isinstance(result, tuple) and len(result) == 1 else result
def __set__(
self, obj: Optional["BNO055_I2C"], value: Union[int, Tuple[int, int, int]]
) -> None:
last_mode = obj.mode
obj.mode = self.mode
# underlying __set__() expects a tuple
set_val = value if isinstance(value, tuple) else (value,)
super().__set__(obj, set_val)
obj.mode = last_mode
[docs]
class BNO055: # pylint: disable=too-many-public-methods
"""
Base class for the BNO055 9DOF IMU sensor.
**Quickstart: Importing and using the device**
Here is an example of using the :class:`BNO055` class.
First you will need to import the libraries to use the sensor
.. code-block:: python
import board
import adafruit_bno055
Once this is done you can define your `board.I2C` object and define your sensor object
.. code-block:: python
i2c = board.I2C() # uses board.SCL and board.SDA
sensor = adafruit_bno055.BNO055_I2C(i2c)
Now you have access to the :attr:`acceleration` attribute among others
.. code-block:: python
sensor = accelerometer.acceleration
"""
def __init__(self) -> None:
chip_id = self._read_register(_ID_REGISTER)
if chip_id != _CHIP_ID:
raise RuntimeError(f"bad chip id ({chip_id:#x} != {_CHIP_ID:#x})")
self._reset()
self.set_normal_mode()
self._write_register(_PAGE_REGISTER, 0x00)
self._write_register(_TRIGGER_REGISTER, 0x00)
self.accel_range = ACCEL_4G
self.gyro_range = GYRO_2000_DPS
self.magnet_rate = MAGNET_20HZ
time.sleep(0.01)
self.mode = NDOF_MODE
time.sleep(0.01)
def _reset(self) -> None:
"""Resets the sensor to default settings."""
self.mode = CONFIG_MODE
try:
self._write_register(_TRIGGER_REGISTER, 0x20)
except OSError: # error due to the chip resetting
pass
# wait for the chip to reset (650 ms typ.)
time.sleep(0.7)
@property
def mode(self) -> int:
"""
legend: x=on, -=off (see Table 3-3 in datasheet)
+------------------+-------+---------+------+----------+----------+
| Mode | Accel | Compass | Gyro | Fusion | Fusion |
| | | (Mag) | | Absolute | Relative |
+==================+=======+=========+======+==========+==========+
| CONFIG_MODE | - | - | - | - | - |
+------------------+-------+---------+------+----------+----------+
| ACCONLY_MODE | X | - | - | - | - |
+------------------+-------+---------+------+----------+----------+
| MAGONLY_MODE | - | X | - | - | - |
+------------------+-------+---------+------+----------+----------+
| GYRONLY_MODE | - | - | X | - | - |
+------------------+-------+---------+------+----------+----------+
| ACCMAG_MODE | X | X | - | - | - |
+------------------+-------+---------+------+----------+----------+
| ACCGYRO_MODE | X | - | X | - | - |
+------------------+-------+---------+------+----------+----------+
| MAGGYRO_MODE | - | X | X | - | - |
+------------------+-------+---------+------+----------+----------+
| AMG_MODE | X | X | X | - | - |
+------------------+-------+---------+------+----------+----------+
| IMUPLUS_MODE | X | - | X | - | X |
+------------------+-------+---------+------+----------+----------+
| COMPASS_MODE | X | X | - | X | - |
+------------------+-------+---------+------+----------+----------+
| M4G_MODE | X | X | - | - | X |
+------------------+-------+---------+------+----------+----------+
| NDOF_FMC_OFF_MODE| X | X | X | X | - |
+------------------+-------+---------+------+----------+----------+
| NDOF_MODE | X | X | X | X | - |
+------------------+-------+---------+------+----------+----------+
The default mode is :const:`NDOF_MODE`.
| You can set the mode using the line below:
| ``sensor.mode = adafruit_bno055.ACCONLY_MODE``
| replacing :const:`ACCONLY_MODE` with the mode you want to use
.. data:: CONFIG_MODE
This mode is used to configure BNO, wherein all output data is reset to zero and sensor
fusion is halted.
.. data:: ACCONLY_MODE
In this mode, the BNO055 behaves like a stand-alone acceleration sensor. In this mode the
other sensors (magnetometer, gyro) are suspended to lower the power consumption.
.. data:: MAGONLY_MODE
In MAGONLY mode, the BNO055 behaves like a stand-alone magnetometer, with acceleration
sensor and gyroscope being suspended.
.. data:: GYRONLY_MODE
In GYROONLY mode, the BNO055 behaves like a stand-alone gyroscope, with acceleration
sensor and magnetometer being suspended.
.. data:: ACCMAG_MODE
Both accelerometer and magnetometer are switched on, the user can read the data from
these two sensors.
.. data:: ACCGYRO_MODE
Both accelerometer and gyroscope are switched on; the user can read the data from these
two sensors.
.. data:: MAGGYRO_MODE
Both magnetometer and gyroscope are switched on, the user can read the data from these
two sensors.
.. data:: AMG_MODE
All three sensors accelerometer, magnetometer and gyroscope are switched on.
.. data:: IMUPLUS_MODE
In the IMU mode the relative orientation of the BNO055 in space is calculated from the
accelerometer and gyroscope data. The calculation is fast (i.e. high output data rate).
.. data:: COMPASS_MODE
The COMPASS mode is intended to measure the magnetic earth field and calculate the
geographic direction.
.. data:: M4G_MODE
The M4G mode is similar to the IMU mode, but instead of using the gyroscope signal to
detect rotation, the changing orientation of the magnetometer in the magnetic field is
used.
.. data:: NDOF_FMC_OFF_MODE
This fusion mode is same as NDOF mode, but with the Fast Magnetometer Calibration turned
‘OFF’.
.. data:: NDOF_MODE
This is a fusion mode with 9 degrees of freedom where the fused absolute orientation data
is calculated from accelerometer, gyroscope and the magnetometer.
"""
return self._read_register(_MODE_REGISTER) & 0b00001111 # Datasheet Table 4-2
@mode.setter
def mode(self, new_mode: int) -> None:
self._write_register(_MODE_REGISTER, CONFIG_MODE) # Empirically necessary
time.sleep(0.02) # Datasheet table 3.6
if new_mode != CONFIG_MODE:
self._write_register(_MODE_REGISTER, new_mode)
time.sleep(0.01) # Table 3.6
@property
def calibration_status(self) -> Tuple[int, int, int, int]:
"""Tuple containing sys, gyro, accel, and mag calibration data."""
calibration_data = self._read_register(_CALIBRATION_REGISTER)
sys = (calibration_data >> 6) & 0x03
gyro = (calibration_data >> 4) & 0x03
accel = (calibration_data >> 2) & 0x03
mag = calibration_data & 0x03
return sys, gyro, accel, mag
@property
def calibrated(self) -> bool:
"""Boolean indicating calibration status."""
sys, gyro, accel, mag = self.calibration_status
return sys == gyro == accel == mag == 0x03
@property
def external_crystal(self) -> bool:
"""Switches the use of external crystal on or off."""
last_mode = self.mode
self.mode = CONFIG_MODE
self._write_register(_PAGE_REGISTER, 0x00)
value = self._read_register(_TRIGGER_REGISTER)
self.mode = last_mode
return value == 0x80
@external_crystal.setter
def use_external_crystal(self, value: bool) -> None:
last_mode = self.mode
self.mode = CONFIG_MODE
self._write_register(_PAGE_REGISTER, 0x00)
self._write_register(_TRIGGER_REGISTER, 0x80 if value else 0x00)
self.mode = last_mode
time.sleep(0.01)
@property
def temperature(self) -> int:
"""Measures the temperature of the chip in degrees Celsius."""
return self._temperature
@property
def _temperature(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def acceleration(self) -> Tuple[Optional[float], Optional[float], Optional[float]]:
"""Gives the raw accelerometer readings, in m/s^2.
Returns an empty tuple of length 3 when this property has been disabled by the current mode.
"""
if self.mode not in [0x00, 0x02, 0x03, 0x06]:
return self._acceleration
return (None, None, None)
@property
def _acceleration(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def magnetic(self) -> Tuple[Optional[float], Optional[float], Optional[float]]:
"""Gives the raw magnetometer readings in microteslas.
Returns an empty tuple of length 3 when this property has been disabled by the current mode.
"""
if self.mode not in [0x00, 0x01, 0x03, 0x05, 0x08]:
return self._magnetic
return (None, None, None)
@property
def _magnetic(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def gyro(self) -> Tuple[Optional[float], Optional[float], Optional[float]]:
"""Gives the raw gyroscope reading in radians per second.
Returns an empty tuple of length 3 when this property has been disabled by the current mode.
"""
if self.mode not in [0x00, 0x01, 0x02, 0x04, 0x09, 0x0A]:
return self._gyro
return (None, None, None)
@property
def _gyro(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def euler(self) -> Tuple[Optional[float], Optional[float], Optional[float]]:
"""Gives the calculated orientation angles, in degrees.
Returns an empty tuple of length 3 when this property has been disabled by the current mode.
"""
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
return self._euler
return (None, None, None)
@property
def _euler(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def quaternion(
self,
) -> Tuple[Optional[float], Optional[float], Optional[float], Optional[float]]:
"""Gives the calculated orientation as a quaternion.
Returns an empty tuple of length 4 when this property has been disabled by the current mode.
"""
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
return self._quaternion
return (None, None, None, None)
@property
def _quaternion(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def linear_acceleration(
self,
) -> Tuple[Optional[float], Optional[float], Optional[float]]:
"""Returns the linear acceleration, without gravity, in m/s.
Returns an empty tuple of length 3 when this property has been disabled by the current mode.
"""
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
return self._linear_acceleration
return (None, None, None)
@property
def _linear_acceleration(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def gravity(self) -> Tuple[Optional[float], Optional[float], Optional[float]]:
"""Returns the gravity vector, without acceleration in m/s.
Returns an empty tuple of length 3 when this property has been disabled by the current mode.
"""
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
return self._gravity
return (None, None, None)
@property
def _gravity(self) -> None:
raise NotImplementedError("Must be implemented.")
@property
def accel_range(self) -> int:
"""Switch the accelerometer range and return the new range. Default value: +/- 4g
See table 3-8 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_ACCEL_CONFIG_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b00000011 & value
@accel_range.setter
def accel_range(self, rng: int = ACCEL_4G) -> None:
old_mode = None
if self.mode != CONFIG_MODE:
old_mode = self.mode
self.mode = CONFIG_MODE
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_ACCEL_CONFIG_REGISTER)
masked_value = 0b11111100 & value
self._write_register(_ACCEL_CONFIG_REGISTER, masked_value | rng)
self._write_register(_PAGE_REGISTER, 0x00)
if old_mode is not None:
self.mode = old_mode
@property
def accel_bandwidth(self) -> int:
"""Switch the accelerometer bandwidth and return the new bandwidth. Default value: 62.5 Hz
See table 3-8 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_ACCEL_CONFIG_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b00011100 & value
@accel_bandwidth.setter
def accel_bandwidth(self, bandwidth: int = ACCEL_62_5HZ) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
old_mode = None
if self.mode != CONFIG_MODE:
old_mode = self.mode
self.mode = CONFIG_MODE
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_ACCEL_CONFIG_REGISTER)
masked_value = 0b11100011 & value
self._write_register(_ACCEL_CONFIG_REGISTER, masked_value | bandwidth)
self._write_register(_PAGE_REGISTER, 0x00)
if old_mode is not None:
self.mode = old_mode
@property
def accel_mode(self) -> int:
"""Switch the accelerometer mode and return the new mode. Default value: Normal
See table 3-8 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_ACCEL_CONFIG_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b11100000 & value
@accel_mode.setter
def accel_mode(self, mode: int = ACCEL_NORMAL_MODE) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_ACCEL_CONFIG_REGISTER)
masked_value = 0b00011111 & value
self._write_register(_ACCEL_CONFIG_REGISTER, masked_value | mode)
self._write_register(_PAGE_REGISTER, 0x00)
@property
def gyro_range(self) -> int:
"""Switch the gyroscope range and return the new range. Default value: 2000 dps
See table 3-9 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_GYRO_CONFIG_0_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b00000111 & value
@gyro_range.setter
def gyro_range(self, rng: int = GYRO_2000_DPS) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
old_mode = None
if self.mode != CONFIG_MODE:
old_mode = self.mode
self.mode = CONFIG_MODE
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_GYRO_CONFIG_0_REGISTER)
masked_value = 0b00111000 & value
self._write_register(_GYRO_CONFIG_0_REGISTER, masked_value | rng)
self._write_register(_PAGE_REGISTER, 0x00)
if old_mode is not None:
self.mode = old_mode
@property
def gyro_bandwidth(self) -> int:
"""Switch the gyroscope bandwidth and return the new bandwidth. Default value: 32 Hz
See table 3-9 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_GYRO_CONFIG_0_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b00111000 & value
@gyro_bandwidth.setter
def gyro_bandwidth(self, bandwidth: int = GYRO_32HZ) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
old_mode = None
if self.mode != CONFIG_MODE:
old_mode = self.mode
self.mode = CONFIG_MODE
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_GYRO_CONFIG_0_REGISTER)
masked_value = 0b00000111 & value
self._write_register(_GYRO_CONFIG_0_REGISTER, masked_value | bandwidth)
self._write_register(_PAGE_REGISTER, 0x00)
if old_mode is not None:
self.mode = old_mode
@property
def gyro_mode(self) -> int:
"""Switch the gyroscope mode and return the new mode. Default value: Normal
See table 3-9 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_GYRO_CONFIG_1_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b00000111 & value
@gyro_mode.setter
def gyro_mode(self, mode: int = GYRO_NORMAL_MODE) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_GYRO_CONFIG_1_REGISTER)
masked_value = 0b00000000 & value
self._write_register(_GYRO_CONFIG_1_REGISTER, masked_value | mode)
self._write_register(_PAGE_REGISTER, 0x00)
@property
def magnet_rate(self) -> int:
"""Switch the magnetometer data output rate and return the new rate. Default value: 20Hz
See table 3-10 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_MAGNET_CONFIG_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b00000111 & value
@magnet_rate.setter
def magnet_rate(self, rate: int = MAGNET_20HZ) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_MAGNET_CONFIG_REGISTER)
masked_value = 0b01111000 & value
self._write_register(_MAGNET_CONFIG_REGISTER, masked_value | rate)
self._write_register(_PAGE_REGISTER, 0x00)
@property
def magnet_operation_mode(self) -> int:
"""Switch the magnetometer operation mode and return the new mode. Default value: Regular
See table 3-10 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_MAGNET_CONFIG_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b00011000 & value
@magnet_operation_mode.setter
def magnet_operation_mode(self, mode: int = MAGNET_REGULAR_MODE) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_MAGNET_CONFIG_REGISTER)
masked_value = 0b01100111 & value
self._write_register(_MAGNET_CONFIG_REGISTER, masked_value | mode)
self._write_register(_PAGE_REGISTER, 0x00)
@property
def magnet_mode(self) -> int:
"""Switch the magnetometer power mode and return the new mode. Default value: Forced
See table 3-10 in the datasheet.
"""
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_MAGNET_CONFIG_REGISTER)
self._write_register(_PAGE_REGISTER, 0x00)
return 0b01100000 & value
@magnet_mode.setter
def magnet_mode(self, mode: int = MAGNET_FORCEMODE_MODE) -> None:
if self.mode in [0x08, 0x09, 0x0A, 0x0B, 0x0C]:
raise RuntimeError("Mode must not be a fusion mode")
self._write_register(_PAGE_REGISTER, 0x01)
value = self._read_register(_MAGNET_CONFIG_REGISTER)
masked_value = 0b00011111 & value
self._write_register(_MAGNET_CONFIG_REGISTER, masked_value | mode)
self._write_register(_PAGE_REGISTER, 0x00)
def _write_register(self, register: int, value: int) -> None:
raise NotImplementedError("Must be implemented.")
def _read_register(self, register: int) -> None:
raise NotImplementedError("Must be implemented.")
@property
def axis_remap(self):
"""Return a tuple with the axis remap register values.
This will return 6 values with the following meaning:
- X axis remap (a value of AXIS_REMAP_X, AXIS_REMAP_Y, or AXIS_REMAP_Z.
which indicates that the physical X axis of the chip
is remapped to a different axis)
- Y axis remap (see above)
- Z axis remap (see above)
- X axis sign (a value of AXIS_REMAP_POSITIVE or AXIS_REMAP_NEGATIVE
which indicates if the X axis values should be positive/
normal or negative/inverted. The default is positive.)
- Y axis sign (see above)
- Z axis sign (see above)
Note that the default value, per the datasheet, is NOT P0,
but rather P1 ()
"""
# Get the axis remap register value.
map_config = self._read_register(_AXIS_MAP_CONFIG_REGISTER)
z = (map_config >> 4) & 0x03
y = (map_config >> 2) & 0x03
x = map_config & 0x03
# Get the axis remap sign register value.
sign_config = self._read_register(_AXIS_MAP_SIGN_REGISTER)
x_sign = (sign_config >> 2) & 0x01
y_sign = (sign_config >> 1) & 0x01
z_sign = sign_config & 0x01
# Return the results as a tuple of all 3 values.
return (x, y, z, x_sign, y_sign, z_sign)
@axis_remap.setter
def axis_remap(self, remap):
"""Pass a tuple consisting of x, y, z, x_sign, y-sign, and z_sign.
Set axis remap for each axis. The x, y, z parameter values should
be set to one of AXIS_REMAP_X (0x00), AXIS_REMAP_Y (0x01), or
AXIS_REMAP_Z (0x02) and will change the BNO's axis to represent another
axis. Note that two axises cannot be mapped to the same axis, so the
x, y, z params should be a unique combination of AXIS_REMAP_X,
AXIS_REMAP_Y, AXIS_REMAP_Z values.
The x_sign, y_sign, z_sign values represent if the axis should be
positive or negative (inverted). See section 3.4 of the datasheet for
information on the proper settings for each possible orientation of
the chip.
"""
x, y, z, x_sign, y_sign, z_sign = remap
# Switch to configuration mode. Necessary to remap axes
current_mode = self._read_register(_MODE_REGISTER)
self.mode = CONFIG_MODE
# Set the axis remap register value.
map_config = 0x00
map_config |= (z & 0x03) << 4
map_config |= (y & 0x03) << 2
map_config |= x & 0x03
self._write_register(_AXIS_MAP_CONFIG_REGISTER, map_config)
# Set the axis remap sign register value.
sign_config = 0x00
sign_config |= (x_sign & 0x01) << 2
sign_config |= (y_sign & 0x01) << 1
sign_config |= z_sign & 0x01
self._write_register(_AXIS_MAP_SIGN_REGISTER, sign_config)
# Go back to normal operation mode.
self._write_register(_MODE_REGISTER, current_mode)
[docs]
def set_normal_mode(self) -> None:
"""Sets the sensor to Normal power mode"""
self._write_register(_POWER_REGISTER, _POWER_NORMAL)
[docs]
def set_suspend_mode(self) -> None:
"""Sets the sensor to Suspend power mode"""
self._write_register(_POWER_REGISTER, _POWER_SUSPEND)
[docs]
class BNO055_I2C(BNO055):
"""
Driver for the BNO055 9DOF IMU sensor via I2C.
"""
_temperature = _ReadOnlyUnaryStruct(0x34, "b")
_acceleration = _ScaledReadOnlyStruct(0x08, "<hhh", 1 / 100)
_magnetic = _ScaledReadOnlyStruct(0x0E, "<hhh", 1 / 16)
_gyro = _ScaledReadOnlyStruct(0x14, "<hhh", 0.001090830782496456)
_euler = _ScaledReadOnlyStruct(0x1A, "<hhh", 1 / 16)
_quaternion = _ScaledReadOnlyStruct(0x20, "<hhhh", 1 / (1 << 14))
_linear_acceleration = _ScaledReadOnlyStruct(0x28, "<hhh", 1 / 100)
_gravity = _ScaledReadOnlyStruct(0x2E, "<hhh", 1 / 100)
offsets_accelerometer = _ModeStruct(_OFFSET_ACCEL_REGISTER, "<hhh", CONFIG_MODE)
"""Calibration offsets for the accelerometer"""
offsets_magnetometer = _ModeStruct(_OFFSET_MAGNET_REGISTER, "<hhh", CONFIG_MODE)
"""Calibration offsets for the magnetometer"""
offsets_gyroscope = _ModeStruct(_OFFSET_GYRO_REGISTER, "<hhh", CONFIG_MODE)
"""Calibration offsets for the gyroscope"""
radius_accelerometer = _ModeStruct(_RADIUS_ACCEL_REGISTER, "<h", CONFIG_MODE)
"""Radius for accelerometer (cm?)"""
radius_magnetometer = _ModeStruct(_RADIUS_MAGNET_REGISTER, "<h", CONFIG_MODE)
"""Radius for magnetometer (cm?)"""
def __init__(self, i2c: I2C, address: int = 0x28) -> None:
self.buffer = bytearray(2)
self.i2c_device = I2CDevice(i2c, address)
super().__init__()
def _write_register(self, register: int, value: int) -> None:
self.buffer[0] = register
self.buffer[1] = value
with self.i2c_device as i2c:
i2c.write(self.buffer)
def _read_register(self, register: int) -> int:
self.buffer[0] = register
with self.i2c_device as i2c:
i2c.write_then_readinto(self.buffer, self.buffer, out_end=1, in_start=1)
return self.buffer[1]
[docs]
class BNO055_UART(BNO055):
"""
Driver for the BNO055 9DOF IMU sensor via UART.
"""
def __init__(self, uart: UART) -> None:
self._uart = uart
self._uart.baudrate = 115200
super().__init__()
def _write_register( # pylint: disable=arguments-differ,arguments-renamed
self, register: int, data: int
) -> None:
if not isinstance(data, bytes):
data = bytes([data])
self._uart.write(bytes([0xAA, 0x00, register, len(data)]) + data)
now = time.monotonic()
while self._uart.in_waiting < 2 and time.monotonic() - now < 0.25:
pass
resp = self._uart.read(self._uart.in_waiting)
if len(resp) < 2:
raise OSError("UART access error.")
if resp[0] != 0xEE or resp[1] != 0x01:
raise RuntimeError(f"UART write error: {resp[1]}")
def _read_register( # pylint: disable=arguments-differ
self, register: int, length: int = 1
) -> int:
i = 0
while i < 3:
self._uart.write(bytes([0xAA, 0x01, register, length]))
now = time.monotonic()
while self._uart.in_waiting < length + 2 and time.monotonic() - now < 0.1:
pass
resp = self._uart.read(self._uart.in_waiting)
if len(resp) >= 2 and resp[0] == 0xBB:
break
i += 1
if len(resp) < 2:
raise OSError("UART access error.")
if resp[0] != 0xBB:
raise RuntimeError(f"UART read error: {resp[1]}")
if length > 1:
return resp[2:]
return int(resp[2])
@property
def _temperature(self) -> int:
return self._read_register(0x34)
@property
def _acceleration(self) -> Tuple[float, float, float]:
resp = struct.unpack("<hhh", self._read_register(0x08, 6))
return tuple(x / 100 for x in resp)
@property
def _magnetic(self) -> Tuple[float, float, float]:
resp = struct.unpack("<hhh", self._read_register(0x0E, 6))
return tuple(x / 16 for x in resp)
@property
def _gyro(self) -> Tuple[float, float, float]:
resp = struct.unpack("<hhh", self._read_register(0x14, 6))
return tuple(x * 0.001090830782496456 for x in resp)
@property
def _euler(self) -> Tuple[float, float, float]:
resp = struct.unpack("<hhh", self._read_register(0x1A, 6))
return tuple(x / 16 for x in resp)
@property
def _quaternion(self) -> Tuple[float, float, float]:
resp = struct.unpack("<hhhh", self._read_register(0x20, 8))
return tuple(x / (1 << 14) for x in resp)
@property
def _linear_acceleration(self) -> Tuple[float, float, float]:
resp = struct.unpack("<hhh", self._read_register(0x28, 6))
return tuple(x / 100 for x in resp)
@property
def _gravity(self) -> Tuple[float, float, float]:
resp = struct.unpack("<hhh", self._read_register(0x2E, 6))
return tuple(x / 100 for x in resp)
@property
def offsets_accelerometer(self) -> Tuple[int, int, int]:
"""Calibration offsets for the accelerometer"""
return struct.unpack("<hhh", self._read_register(_OFFSET_ACCEL_REGISTER, 6))
@offsets_accelerometer.setter
def offsets_accelerometer(self, offsets: Tuple[int, int, int]) -> None:
data = bytearray(6)
struct.pack_into("<hhh", data, 0, *offsets)
self._write_register(_OFFSET_ACCEL_REGISTER, bytes(data))
@property
def offsets_magnetometer(self) -> Tuple[int, int, int]:
"""Calibration offsets for the magnetometer"""
return struct.unpack("<hhh", self._read_register(_OFFSET_MAGNET_REGISTER, 6))
@offsets_magnetometer.setter
def offsets_magnetometer(self, offsets: Tuple[int, int, int]) -> None:
data = bytearray(6)
struct.pack_into("<hhh", data, 0, *offsets)
self._write_register(_OFFSET_MAGNET_REGISTER, bytes(data))
@property
def offsets_gyroscope(self) -> Tuple[int, int, int]:
"""Calibration offsets for the gyroscope"""
return struct.unpack("<hhh", self._read_register(_OFFSET_GYRO_REGISTER, 6))
@offsets_gyroscope.setter
def offsets_gyroscope(self, offsets: Tuple[int, int, int]) -> None:
data = bytearray(6)
struct.pack_into("<hhh", data, 0, *offsets)
self._write_register(_OFFSET_GYRO_REGISTER, bytes(data))
@property
def radius_accelerometer(self) -> int:
"""Radius for accelerometer (cm?)"""
return struct.unpack("<h", self._read_register(_RADIUS_ACCEL_REGISTER, 2))[0]
@radius_accelerometer.setter
def radius_accelerometer(self, radius: int) -> None:
data = bytearray(2)
struct.pack_into("<h", data, 0, radius)
self._write_register(_RADIUS_ACCEL_REGISTER, bytes(data))
@property
def radius_magnetometer(self) -> int:
"""Radius for magnetometer (cm?)"""
return struct.unpack("<h", self._read_register(_RADIUS_MAGNET_REGISTER, 2))[0]
@radius_magnetometer.setter
def radius_magnetometer(self, radius: int) -> None:
data = bytearray(2)
struct.pack_into("<h", data, 0, radius)
self._write_register(_RADIUS_MAGNET_REGISTER, bytes(data))