ulab.numpy
– Numerical approximation methods
- ulab.numpy.interp(x: ndarray, xp: ndarray, fp: ndarray, *, left: _float | None = None, right: _float | None = None) ndarray
- Parameters:
x (ulab.numpy.ndarray) – The x-coordinates at which to evaluate the interpolated values.
xp (ulab.numpy.ndarray) – The x-coordinates of the data points, must be increasing
fp (ulab.numpy.ndarray) – The y-coordinates of the data points, same length as xp
left – Value to return for
x < xp[0]
, default isfp[0]
.right – Value to return for
x > xp[-1]
, default isfp[-1]
.
Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x.
- ulab.numpy.trapz(y: ndarray, x: ndarray | None = None, dx: _float = 1.0) _float
- Parameters:
y (1D ulab.numpy.ndarray) – the values of the dependent variable
x (1D ulab.numpy.ndarray) – optional, the coordinates of the independent variable. Defaults to uniformly spaced values.
dx (float) – the spacing between sample points, if x=None
Returns the integral of y(x) using the trapezoidal rule.
- ulab.numpy.arange(stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) ndarray
- ulab.numpy.arange(start: _float, stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) ndarray
Return a new 1-D array with elements ranging from
start
tostop
, with step sizestep
.
- ulab.numpy.concatenate(arrays: Tuple[ndarray], *, axis: int = 0) ndarray
Join a sequence of arrays along an existing axis.
- ulab.numpy.empty(shape: int | Tuple[int, Ellipsis], *, dtype: _DType = ulab.numpy.float) ndarray
Return a new array of the given shape with all elements set to 0. An alias for numpy.zeros.
- ulab.numpy.eye(size: int, *, M: int | None = None, k: int = 0, dtype: _DType = ulab.numpy.float) ndarray
Return a new square array of size, with the diagonal elements set to 1 and the other elements set to 0. If k is given, the diagonal is shifted by the specified amount.
- ulab.numpy.full(shape: int | Tuple[int, Ellipsis], fill_value: _float | _bool, *, dtype: _DType = ulab.numpy.float) ndarray
Return a new array of the given shape with all elements set to 0.
- ulab.numpy.linspace(start: _float, stop: _float, *, dtype: _DType = ulab.numpy.float, num: int = 50, endpoint: _bool = True, retstep: _bool = False) ndarray
Return a new 1-D array with
num
elements ranging fromstart
tostop
linearly.
- ulab.numpy.logspace(start: _float, stop: _float, *, dtype: _DType = ulab.numpy.float, num: int = 50, endpoint: _bool = True, base: _float = 10.0) ndarray
Return a new 1-D array with
num
evenly spaced elements on a log scale. The sequence starts atbase ** start
, and ends withbase ** stop
.
- ulab.numpy.ones(shape: int | Tuple[int, Ellipsis], *, dtype: _DType = ulab.numpy.float) ndarray
Return a new array of the given shape with all elements set to 1.
- ulab.numpy.zeros(shape: int | Tuple[int, Ellipsis], *, dtype: _DType = ulab.numpy.float) ndarray
Return a new array of the given shape with all elements set to 0.
- ulab.numpy._ArrayLike
- ulab.numpy._DType
ulab.numpy.int8
,ulab.numpy.uint8
,ulab.numpy.int16
,ulab.numpy.uint16
,ulab.numpy.float
orulab.numpy.bool
- ulab.numpy.int8: _DType
Type code for signed integers in the range -128 .. 127 inclusive, like the ‘b’ typecode of
array.array
- ulab.numpy.int16: _DType
Type code for signed integers in the range -32768 .. 32767 inclusive, like the ‘h’ typecode of
array.array
- ulab.numpy.float: _DType
Type code for floating point values, like the ‘f’ typecode of
array.array
- ulab.numpy.uint8: _DType
Type code for unsigned integers in the range 0 .. 255 inclusive, like the ‘H’ typecode of
array.array
- ulab.numpy.uint16: _DType
Type code for unsigned integers in the range 0 .. 65535 inclusive, like the ‘h’ typecode of
array.array
- ulab.numpy.argmax(array: _ArrayLike, *, axis: int | None = None) int
Return the index of the maximum element of the 1D array
- ulab.numpy.argmin(array: _ArrayLike, *, axis: int | None = None) int
Return the index of the minimum element of the 1D array
- ulab.numpy.argsort(array: ndarray, *, axis: int = -1) ndarray
Returns an array which gives indices into the input array from least to greatest.
- ulab.numpy.cross(a: ndarray, b: ndarray) ndarray
Return the cross product of two vectors of length 3
- ulab.numpy.diff(array: ndarray, *, n: int = 1, axis: int = -1) ndarray
Return the numerical derivative of successive elements of the array, as an array. axis=None is not supported.
- ulab.numpy.flip(array: ndarray, *, axis: int | None = None) ndarray
Returns a new array that reverses the order of the elements along the given axis, or along all axes if axis is None.
- ulab.numpy.max(array: _ArrayLike, *, axis: int | None = None) float
Return the maximum element of the 1D array
- ulab.numpy.mean(array: _ArrayLike, *, axis: int | None = None) float
Return the mean element of the 1D array, as a number if axis is None, otherwise as an array.
- ulab.numpy.median(array: ndarray, *, axis: int = -1) ndarray
Find the median value in an array along the given axis, or along all axes if axis is None.
- ulab.numpy.min(array: _ArrayLike, *, axis: int | None = None) float
Return the minimum element of the 1D array
- ulab.numpy.roll(array: ndarray, distance: int, *, axis: int | None = None) None
Shift the content of a vector by the positions given as the second argument. If the
axis
keyword is supplied, the shift is applied to the given axis. The array is modified in place.
- ulab.numpy.sort(array: ndarray, *, axis: int = -1) ndarray
Sort the array along the given axis, or along all axes if axis is None. The array is modified in place.
- ulab.numpy.std(array: _ArrayLike, *, axis: int | None = None, ddof: int = 0) float
Return the standard deviation of the array, as a number if axis is None, otherwise as an array.
- ulab.numpy.sum(array: _ArrayLike, *, axis: int | None = None) float | int | ndarray
Return the sum of the array, as a number if axis is None, otherwise as an array.
- class ulab.numpy.ndarray
- ulab.numpy.set_printoptions(threshold: int | None = None, edgeitems: int | None = None) None
Set printing options
- ulab.numpy.array(values: ndarray | Iterable[float | bool | Iterable[Any]], *, dtype: _DType = ulab.numpy.float) ndarray
alternate constructor function for
ulab.numpy.ndarray
. Mirrors numpy.array
- ulab.numpy.trace(m: ndarray) float
- Parameters:
m – a square matrix
Compute the trace of the matrix, the sum of its diagonal elements.
- ulab.numpy.dot(m1: ndarray, m2: ndarray) ndarray | float
-
Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned.
- ulab.numpy.acos(a: _ArrayLike) ndarray
Computes the inverse cosine function
- ulab.numpy.acosh(a: _ArrayLike) ndarray
Computes the inverse hyperbolic cosine function
- ulab.numpy.asin(a: _ArrayLike) ndarray
Computes the inverse sine function
- ulab.numpy.asinh(a: _ArrayLike) ndarray
Computes the inverse hyperbolic sine function
- ulab.numpy.around(a: _ArrayLike, *, decimals: int = 0) ndarray
Returns a new float array in which each element is rounded to
decimals
places.
- ulab.numpy.atan(a: _ArrayLike) ndarray
Computes the inverse tangent function; the return values are in the range [-pi/2,pi/2].
- ulab.numpy.arctan2(ya: _ArrayLike, xa: _ArrayLike) ndarray
Computes the inverse tangent function of y/x; the return values are in the range [-pi, pi].
- ulab.numpy.atanh(a: _ArrayLike) ndarray
Computes the inverse hyperbolic tangent function
- ulab.numpy.ceil(a: _ArrayLike) ndarray
Rounds numbers up to the next whole number
- ulab.numpy.cos(a: _ArrayLike) ndarray
Computes the cosine function
- ulab.numpy.cosh(a: _ArrayLike) ndarray
Computes the hyperbolic cosine function
- ulab.numpy.degrees(a: _ArrayLike) ndarray
Converts angles from radians to degrees
- ulab.numpy.erf(a: _ArrayLike) ndarray
Computes the error function, which has applications in statistics
- ulab.numpy.erfc(a: _ArrayLike) ndarray
Computes the complementary error function, which has applications in statistics
- ulab.numpy.exp(a: _ArrayLike) ndarray
Computes the exponent function.
- ulab.numpy.expm1(a: _ArrayLike) ndarray
Computes $e^x-1$. In certain applications, using this function preserves numeric accuracy better than the
exp
function.
- ulab.numpy.floor(a: _ArrayLike) ndarray
Rounds numbers up to the next whole number
- ulab.numpy.gamma(a: _ArrayLike) ndarray
Computes the gamma function
- ulab.numpy.lgamma(a: _ArrayLike) ndarray
Computes the natural log of the gamma function
- ulab.numpy.log(a: _ArrayLike) ndarray
Computes the natural log
- ulab.numpy.log10(a: _ArrayLike) ndarray
Computes the log base 10
- ulab.numpy.log2(a: _ArrayLike) ndarray
Computes the log base 2
- ulab.numpy.radians(a: _ArrayLike) ndarray
Converts angles from degrees to radians
- ulab.numpy.sin(a: _ArrayLike) ndarray
Computes the sine function
- ulab.numpy.sinc(a: _ArrayLike) ndarray
Computes the normalized sinc function
- ulab.numpy.sinh(a: _ArrayLike) ndarray
Computes the hyperbolic sine
- ulab.numpy.sqrt(a: _ArrayLike) ndarray
Computes the square root
- ulab.numpy.tan(a: _ArrayLike) ndarray
Computes the tangent
- ulab.numpy.tanh(a: _ArrayLike) ndarray
Computes the hyperbolic tangent
- ulab.numpy.vectorize(f: Callable[[int], float] | Callable[[float], float], *, otypes: _DType | None = None) Callable[[_ArrayLike], ndarray]
- Parameters:
f (callable) – The function to wrap
otypes – List of array types that may be returned by the function. None is interpreted to mean the return value is float.
Wrap a Python function
f
so that it can be applied to arrays. The callable must return only values of the types specified byotypes
, or the result is undefined.